
International News on Fats, Oils, and Related Materials

OMEGA-6 to OMEGA-3 via **GENETHERAPY**

Designing tastier soy varieties

\$79

JAOUTRO9 PORTO PORTO 4200-465 MR DOUTOR ROBERTO FRIAS SAU FACULTY OF ENGINEERING, UNIVERSITY OF PORTO F. XAVIER MALCATA

ngineered to make industrial lipids gredient that improves gut health

8 One dose of Fat-1 gene therapy eases osteoarthritis in mice

This article describes research showing a single dose of *fat-1* gene therapy eased osteoarthritis symptoms in mice by converting omega-6 fatty acids into anti-inflammatory omega-3s. The treatment reduced joint damage, inflammation, and signs of premature cellular aging tied to obesity. While promising, the therapy has only been tested in animals, and more work is needed before human trials can begin.

1 7 Removing off-flavors from soy

Scientists are developing new soybean varieties designed to eliminate the "beany" and "painty" off-flavors that turn consumers away from soy-based foods. By reducing polyunsaturated fatty acids and targeting key enzymes, they created high-oleic, flavor-null soybeans that retain nutrition without the unpleasant taste. Read about how these advances could make soy protein more appealing for use in snacks, beverages, and plant-based alternatives.

16 Metabolic engineering enables lipid redesign

Researchers have engineered cover crops like camelina and pennycress to produce acetyl-triacylglycerols (acetyl-TAGs), specialty plant oils with low viscosity and improved cold properties ideal for industrial uses. By optimizing enzymes, reducing competing pathways, and increasing precursor supply, they achieved nearly pure acetyl-TAG levels in seeds. The article describes how the cover crops were engineered as sustainable sources for biofuels, lubricants, and other biobased products.

Scientists study a valuable ingredient in olive oil

The compound 3,3-dimethyl-1-butanol (DMB) works in the human gut to inhibit some inflammatory diseases by preventing the formation of the trimethylamine enzyme. In animal models, this enzyme creates a compound in the liver that seems to facilitate a build up of fat and cholesterol in the arteries. An international research team developed a method that confirms DMB's presence in extra virgin olive oil and reliably measures the amount. The next step is to better understand the contribution DMB makes to improving human health.

CONTENTS

4 Index to Advertisers

5 Editor's Letter

6 Division Update

26 Regulatory Review

28 Extracts & Distillates

AOCS MISSION STATEMENT

AOCS advances the science and technology of oils, fats, proteins, surfactants, and related materials, enriching the lives of people everywhere.

INFORM

International News on Fats, Oils, and Related Materials ISSN: 1528-9303 IFRMEC 36 (9) Copyright © 2013 AOCS Press

EDITORIAL ADVISORY COMMITTEE

Julian Barnes Etienne Guillocheau Jerry King Gary List Thais L. T. da Silva Raj Shah Ryan Stoklosa Ignacio Vieitez Bryan Yeh

AOCS OFFICERS

PRESIDENT: Gerard Baillely, Procter & Gamble, Mason, Ohio, USA
VICE PRESIDENT: Fabiola Dionisi, Societe' Des Produits Nestlé - Nestlé Research,
Lausanne, Vaud, Switzerland

TREASURER: Greg Hatfield, Bunge Limited, Oakville, Ontario, Canada SECRETARY: Roger Nahas, Kalsec, Kalamazoo, Michigan, USA PAST PRESIDENT: Tony O'Lenick, SurfaTech, Lawrenceville, Georgia, USA CHIEF EXECUTIVE OFFICER: Patrick Donnelly

AOCS STAFF

EDITOR-IN-CHIEF: Rebecca Guenard
MEMBERSHIP DIRECTOR: Travis Skodack

PAGE LAYOUT: Moon Design

The views expressed in contributed and reprinted articles are those of the expert authors and are not official positions of AOCS. Some articles may be written using an AI companion.

INDEX TO ADVERTISERS

*CPM Crown	
*Desmet USA, Inc.	C2

*Corporate member of AOCS who supports the Society through corporate membership dues.

3356 Big Pine Trail, Ste C&D

PO Box 7230

Champaign, IL 61826 USA Phone: +1 217-359-2344

Fax: +1 217-351-8091 Email: publications@aocs.org

ADVERTISING INSTRUCTIONS AND DEADLINES

Closing dates are published on the AOCS website (www.aocs.org). Insertion orders received after closing will be subject to acceptance at advertisers' risk. No cancellations accepted after closing date. Ad materials must be prepared per published print ad specifications (posted on www.aocs.org) and received by the published material closing dates. Materials received after deadline or materials requiring changes will be published at advertisers' risk. Send insertion orders and materials to the email address below.

NOTE: AOCS reserves the right to reject advertising copy which in its opinion is unethical, misleading, unfair, or otherwise inappropriate or incompatible with the character of *INFORM*. Advertisers and advertising agencies assume liability for all content (including text, representation, and illustrations) of advertisements printed and also assume responsibility for any claims arising therefrom made against the publisher.

AOCS Advertising:

Travis Skodack, Director Membership

Phone: 1-217-693-4897 Email: travis.skodack@aocs.org

Formerly published as Chemists' Section, Cotton Oil Press, 1917–1924; Journal of the Oil and Fat Industries, 1924–1931; Oil & Soap, 1932–1947; news portion of JAOCS, 1948–1989. The American Oil Chemists' Society assumes no responsibility for statements or opinions of contributors.

INFORM is published 10 times per year in January, February, March, April, May, June, July/August, September, October, November/December by AOCS Press, 3356 Big Pine Trail, Ste C&D, Champaign, IL 61822 USA. Phone: +1 217-359-2344. Periodicals Postage paid at Champaign, IL, and additional mailing offices. POSTMASTER: Send address changes to INFORM, PO Box 7230, Champaign, IL 61826

Subscriptions to INFORM for members of the American Oil Chemists' Society are included in the annual dues. An individual subscription to INFORM is \$195. Outside the U.S., add \$35 for surface mail, or add \$125 for air mail. Institutional subscriptions to the Journal of the American Oil Chemists' Society and INFORM combined are now being handled by Wiley. Price list information is available at http://olabout. wiley.com/WileyCDA/Section/id-406108.html. Claims for copies lost in the mail must be received within 30 days (90 days outside the U.S.) of the date of issue. Notice of change of address must be received two weeks before the date of issue. For subscription inquiries, please contact Julie May at AOCS, julie.may@aocs.org. AOCS membership information and applications can be obtained from: AOCS, PO Box 7230, Champaign, IL 61826 USA or membership@ aocs.org.

NOTICE TO COPIERS: Authorization to photocopy items for internal or personal use, or the internal or personal use of specific clients, is granted by the American Oil Chemists' Society for libraries and other users registered with the Copyright Clearance Center (www.copyright.com) Transactional Reporting Service, provided that the base fee of \$15.00 and a page charge of \$0.50 per copy are paid directly to CCC, 21 Congress St., Salem, MA 01970 USA.

Biotechnology Division

2025 DIVISION ACHIEVEMENT AWARD WINNER

Xavier Malcata is a professor at University of Porto, in Porto, Portugal and a senior researcher at LEPABE, a faculty of engineering research unit operating in the fields of chemical, environmental and biological engineering at the university.

INFORM: Can you share your journey into the field of biotechnology? What inspired you to pursue this path?

Malcata: I was motivated from the very beginning by the prospect of working in biotechnology since it offers an array of engineering opportunities. My journey started with a bachelor's degree in chemical engineering from the University of Porto, followed by a chemical engineering doctorate with a minor in food science, biochemistry, and statistics from the University of Wisconsin, Madison.

The research program for my dissertation covered reactors with immobilized lipases aimed at tailoring edible fats. I eventually applied my background on modeling from first principles to optimize biochemical processes *in vitro*. From then on, I have focused on various fields of biotechnology, from characterization and improvement of Portuguese traditional foods, through identification and study of adventitious probiotic cultures from non-dairy sources, to design and optimization of photobioreactors for operations with microalgae.

INFORM: Your work has had a substantial impact on the field of biotechnology. Can you discuss one or two key projects that you believe have made the most difference?

Malcata: My studies of lipase immobilization on multiple supports helped pave the way for current industrial applications of immobilized lipases to engineer existing fats via inter- or trans-esterification with target fatty acids bearing a stronger nutritional role or a more pleasant sensory feature. Lipases were by that time seen as a solution in search of a problem. Their unique activation at the interface between aqueous media and hydrophobic materials (plastic polymers or insoluble lipids) had hampered deeper studies. The difficulties stemmed from simultaneously handling the interfacial chemical reaction and the mass transfer between the biphasic systems that nature designed. Later, I delved into the possibility of using lipases for reactive distillation to produce volatile esters with sensory notes and combining separations with *in situ* enzyme-catalyzed reactions.

INFORM: What are some of the biggest challenges you have faced in your research, and how did you overcome them?

Malcata: The biggest challenges faced during my research were probably similar to those faced by most researchers. The need to find sustained sources of funding to cover the

Xavier Malcata

expenses incurred, as well as sophisticated analytical and processing equipment; and to find graduate students available to pursue an academic career, motivated in advancing the state-of-the-art, autonomous in their performance, curious in their approach, thorough in their analysis, and resilient in their work. Research is a passionate game where one works at the edge of knowledge but never knows what will be found ahead. As Thomas Edison once said, "I never failed in research; I just learned one thousand ways that do not work."

INFORM: How has your research evolved over the years, and what emerging trends do you see in biotechnology that excite you?

Malcata: I started from a classical background in chemical engineering supported by thermodynamics, chemical kinetics, transport phenomena, and process control as structural pillars. As I became more proficient at handling and understanding viable microorganisms and their enzymes to bring about reactions with rates and selectivity at will, I realized that those same areas of knowledge applied at the microscale. But the phenomena take place simultaneously and are subjected to complex interactions that guarantee the best use of envi-

YOUR AOCS COMMUNITY

ronmental resources available in the medium. It was indeed a challenge to mechanistically model such microorganisms or their enzymes because the same laws of nature apply there that also apply to chemical processes at industrial scale. At present, I am considering specific yet integrated changes in the metabolic pathways of photosynthetic microorganisms to enhanced the production of commodities that may serve as cleaner fuels in the near future.

INFORM: How do you believe this recognition will influence your future work in biotechnology?

Malcata: I must confess that, whenever selected as a recipient of an award, especially if granted by a respected international scientific or professional society, I feel an indescribable amount of pride to have my work recognized by peers worldwide, and a unique sensation of accomplished duty. Over several decades, I have pursued a consistent and integrated research program to help advance the state-of-the-art in topics motivated by my scientific curiosity, and the possibility of transferring that knowledge to undergraduate and graduate students. The track record I have built has also made a difference in my performance in the classroom. My lectures have plenty of "war stories," coming from real life and actual experience—prone to emphasize practical applicability of advanced knowledge, and rational application of first principles to understand and solve whatever situations and problems arise.

INFORM: What role do you see AOCS playing in fostering collaboration among scientists and industry professionals in biotechnology?

Malcata: AOCS addresses the interface between many distinct disciplines within the core field of fats and oils. It has established itself as an invaluable stakeholder, with complementary and unique expertise spread throughout its membership. Biotechnology is one of the best examples of how tools inspired by our surroundings (namely, biochemical processes established in nature) can be used to our advantage to improve oils and fats, in both nutritional, functional, and envi-

ronmental terms. In addition, both the fundamental issues of science and the applied issues of technology are included in the portfolio of activities AOCS offers—from topic-oriented workshops to the annual meeting with many thematic sessions, from advanced books meant for professionals and the scientific community to a membership magazine covering daily issues of wide interest. Furthermore, its awards designed for public recognition of exemplary careers and outstanding performance in academia, industry, or government contributes to the level of excellence it has consistently pursued.

INFORM: What advice would you give to young scientists and researchers aspiring to make an impact in biotechnology?

Malcata: My advice to young scientists at the beginning of their careers is simple and straightforward, be tenacious with your approaches, but humble with your results. Research is a double-edged sword, in that it will eventually yield some useful results—from either the understanding or the application points of view-but typically at the expense of many failures along the way. Therefore, a strong character is a must, be able to overcome misfortunes and poor outcomes while already looking for the next move and maintain an optimistic attitude. On the other hand, research (especially in biotechnology) is rather expensive, and thus only possible at the expense of public money that might be used otherwise. This means that whatever successes are attained, they would have been hardly possible without the anonymous support of your fellow citizens. They deserve consideration for their implicit input, well beyond the fame earned by the researcher himself. In fact, lasting impacts may come out of a fortunate breakthrough but are usually the outcome of long paths of consistent, resigned, incremental work, building on the results by peers and relying on multi-tasked teams holding complementary expertise. Finally, research cannot be blindly developed. It should ultimately aim at improving the quality of life of mankind and the preservation of our common home called Earth—otherwise it will be meaningless and devoid of social value.