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Abstract

In this work we present a comparison of different discretization techniques, in the context of finite volume formulation, for the solution of
separation processes involving adsorption, absorption and permeation.

The mathematical model developed assumes axially dispersed plug-flow, uniform bed/sorbent/membrane properties along the axial coordinate
and negligible radial gradients. The algorithm used enforces both local and global flux conservation in space and time. The discretization of
convection terms is made using unbounded schemes and bounded high-resolution schemes.

We use the same strategy for simulating three different separation processes: membrane permeation, pressure swing adsorption and simulated
moving bed. In the case of membrane permeation we present simulation results of air separation using a polysulfone membrane and compare
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o ones of Coker et al. [Coker, D. T., Freeman, B. D., & Fleming, G. K. (1998). Modeling multicomponent gas separation using ho
embrane contactors.AIChE Journal, 44, 1289]. In the case of pressure swing adsorption we study a small pressure swing adsorption u

eparation as described by Santos et al. [Santos, J. C., Portugal, A. F., Magalhaes, F. D., & Mendes, A. (2004). Simulation and opt
mall oxygen pressure swing adsorption units.Industrial and Engineering Chemistry Research, 43, 8328]. In the case of simulated moving bed
onsider the glucose/fructose separation as described by Leão and Rodrigues [Lẽao, C. P., & Rodrigues, A. E. (2004). Transient and steady-
odels for simulated moving bed processes: Numerical solutions.Computers and Chemical Engineering, 28, 1725].
Our simulated results are particularly interesting for the case of transient highly convective separation problems, where standard proc

ead to the appearance of unphysical oscillations in the computed solution due to the existence of sharp moving fronts.
2005 Elsevier Ltd. All rights reserved.
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. Introduction

The simulation and optimization of adsorption, absorption
nd permeation separation processes have been under close
tudy in the last decade (Cruz, Santos, Magalhães, & Mendes,
003; Nilchan & Pantelides, 1998; Purnomo & Alpay, 2000;
hang, Hidajat, Ray, & Morbidelli, 2002), due to the devel-
pment of new (ad) (ab) sorbents with high sorption capacity
nd selectivity (Sherman, 1999) and membranes (polymeric and
arbon molecular sieve based) with high permeabities and selec-
ivities (Mendes, Magalh̃aes, & Costa, 2003).

Transient sorption separation processes can be modeled
y using convection-dominated partial differential equations
PDEs) for mass conservation in the fluid phase, ordinary dif-
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ferential equations (ODEs) for the sorption rate in the statio
phase, and eventually, algebraic equations for the sorption
librium between phases. The coupled system of partial diffe
tial equations should be solved numerically, because the an
solution can only be derived for ideal conditions (normally un
the following assumptions: isothermal system, instantan
equilibrium between the fluid and the stationary phases,
ligible pressure drop, linear isotherm and frozen concentr
profile during pressure variation stages).

For solving such system of equations, two different num
ical approaches are normally used. The first one consis
the simultaneous space and time discretization of each
and then resolution of the resulting system of non-linear a
braic equations (for example: double collocation). The o
approach consists on the spatial discretization of each PD
subsequent integration of the resulting initial value prob
of ordinary differential equations with an appropriate inte
tor (method of lines: MOL). Usually, the integrator used

098-1354/$ – see front matter © 2005 Elsevier Ltd. All rights reserved.
oi:10.1016/j.compchemeng.2005.08.004
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Nomenclature

A area (m2)
bi Langmuir affinity constant (Pa−1)
c fluid phase molar concentration (mol m−3)
Cv valve parameter
d diameter (m)
Dax effective axial dispersion coefficient (m2 s−1)
De

M effective homogeneous diffusion coefficient
(m s−1)

k iteration or LDF coefficient,ki = 15De
M,i/r2

p
(1/s)

Kv valve parameter
L length column (module) (m) or permeability coef-

ficient (mol m−2 s−1 Pa−1)
n number of stages
nc number of mixture components
N molar flow rate (mol s−1)
p pressure (Pa)
Pe Peclet number,Pe = urefL/Dax
Pur product purity
q molar concentration in the adsorbed phase

(mol kg−1)
qmax isotherm parameter, maximum capacity

(mol kg−1)
r radius (m)
� universal gas constant (J mol−1 K−1)
Rec product recovery
t time variable (s)
T temperature (K)
u average (interstitial molar) velocity (m s−1)
x dimensionless spatial coordinate,x = z/L
y molar fraction
z spatial coordinate (m)

Greek symbols
αM ratio between diffusivity coefficients,αi,M =

De
i,M/Dref = ki/kref

β pressure drop parameter
δF membrane thickness (m)
εb bed void fraction (ratio between the free volume

and the total volume)
εp particle porosity
θ dimensionless time variable,θ = t/τb
µ mixture viscosity (kg m−1 s−1)
ρs apparent particle density (kg m−3)
τb bed time constant,τb = L/uref
φ error of the solution
ϕ ratio between bed time constant and particle

diffusion time constant (LDF approximation),
ϕ = τbkref

Subscripts
i component
in feed stream (inlet)
out outlet stream

pres pressurization
prod production
purg purge
ref reference
T total

Superscripts
F feed
H high
L low
P permeate or purge
R retentate
ST storage tank
V vent
0 standard temperature and pressure conditions

(STP)
* dimensionless variable

based on the backward differentiation formulas (BDF) (Byrne,
Hindmarsh, Jackson, & Brown, 1977; Hindmarsh, 1974;
Petzold, 1983), known as Gear method (Gear, 1971), which is
suitable for the solution of stiff problems.

Different numerical methods are usually applied in space and
time discretization: orthogonal collocation, orthogonal colloca-
tion on finite elements, Galerkin finite elements and finite differ-
ences. These numerical methods are normally unbounded, which
means that unphysical oscillations can appear in the computed
solution. In the context of finite volume formulation,Harten,
Engquist, Osher, and Chakravarthy (1987)proposed the use of
ENO (essentially non-oscillatory) schemes and Shu and Osher
(Shu, 1997; Shu & Osher, 1988, 1989) the WENO (weighted
ENO) schemes for the solution of partial differential equations
in the presence of steep moving fronts.

The aim of this work is present a numerical algorithm for the
solution of sorption and permeation problems that provide accu-
rate, local and global flux conservation, and stable numerical
results (without unphysical oscillations in the computed solu-
tion) even at shocks or discontinuities and to present a systematic
comparison of different discretization techniques.

The remaining of the paper is organized as follows: first the
mathematical model (mass balance equation, boundary condi-
tions, momentum equation) is presented. Following is presented
the implementation of the successive stages method and the finite
volume method, as well as a small discussion on the imple-
m NO
s iques
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entation of non-linear high-resolution schemes and WE
chemes. The performance of different discretization techn
s presented for three different separation processes: mem
ermeation, pressure swing adsorption and simulated m
ed. In the case of membrane permeation we simulate a p
tion module for air separation using a polysulfone memb
s described byCoker, Freeman, and Fleming (1998). In the cas
f pressure swing adsorption we study a two column pre
wing adsorption unit for air separation as described bySantos
ortugal, Magalhaes, and Mendes (2004). In the case of simu
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lated moving bed we consider the glucose/fructose separation as
described byLeão and Rodrigues (2004). The paper ends with
a summary of the main conclusions.

2. Model equations

The proposed theoretical model considers a separation sys-
tem with a sorbent (adsorbent or absorbent) or a membrane
(Fig. 1). The following main assumptions are made: perfect gas
behavior (where applicable), axially dispersed plug-flow, uni-
form bed/sorbent/membrane properties along the axial coordi-
nate and negligible radial gradients. According to these assump-
tions, the model equations can be written as follows:

Total mass balance :
∂cT

∂t
= −∂(ucT)

∂z
−

nc∑
i=1

Ni = 0 (1)

ith component mass balance :

∂ci

∂t
= ∂

∂z

(
Dax cT

∂(ci/cT)

∂z

)
− ∂(uci)

∂z
− Ni, i = 1, nc

(2)

wherecT is the total molar concentration,u the average (inter-
stitial) molar velocity,z the spatial coordinate,Dax the effective
axial dispersion coefficient,Ni the ith component molar flow
r e,
t mix
t

as
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term. When Eq.(4) is dominated by advection (1/Pe → 0), it is
called a hyperbolic PDE.

The application of conventional higher-order discretization
schemes to the advective (convective) term, in the case of
convection-dominated partial differential equation, may not be
adequate leading to the appearance of non-physical oscillations
(Finlayson, 1992). The upwind differencing scheme (UDS) pro-
posed byCourant, Isaacson, and Rees (1952)is the only uncon-
ditionally stable scheme. This scheme, referred in the literature
using different names: successive stages method, mixed cells in
series model or cascade of perfectly mixed tanks, is well known
in the context of separation processes (Charton & Nicoud, 1995;
Cheng & Hill, 1985; Coker et al., 1998; Ludemann-Hombourger,
Nicoud, & Bailly, 2000), however has only first-order accuracy,
as will be seen in this work, and is not normally recommended
(Freitas, 1994).

The implementation of ENO (essentially non-oscillatory)
schemes (Harten et al., 1987) and WENO (weighted ENO)
schemes (Shu, 1997; Shu & Osher, 1988, 1989) for the solu-
tion of partial differential equations, can reduce significantly the
appearance of non-physical oscillations, however, these are nor-
mally very computation time consuming (Harten, 1996; Harten
et al., 1987). Other approaches based on Harten’s wavelet based
framework (Harten, 1996) were proposed. The wavelet based
ENO adaptative strategy may produce moderate CPU reduc-
tions, since in smooth regions the numerical fluxes are evaluated
w nts.
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Eqs. (1) and (2) can be written in dimensionless form
ollows:

otal mass balance :
∂c∗

T

∂θ
= −∂(u∗c∗

T)

∂x
−

nc∑
i=1

N∗
i (3)

th component mass balance :

∂c∗
i

∂θ
= 1

Pe

∂

∂x

[
c∗

T
∂(c∗

i /c
∗
T)

∂x

]
− ∂(u∗c∗

i )

∂x
− N∗

i (4)

herec∗
T is the dimensionless total molar concentration,c∗

T =
T/cref; θ the dimensionless time variable,θ = t/τb, τb the bed
ime constant,τb = L/uref; u* the dimensionless molar ave
ge velocity,u* = u/uref; x the dimensionless axial coordina
= z/L; N∗

i the ith component dimensionless molar flow ra
∗
i = Niτb/cref and Pe the Peclet number for mass trans
e = urefL/Dax.

Eqs.(3) and(4) have initial values:c∗
T(t, x) = c∗

T(0, x) and
∗
i (t, x) = c∗

i (0, x). The term appearing on the left-hand side
q.(4) is called the inertia term, while on the right-hand side
an identify a convective (advective), a diffusive and a so

Fig. 1. Sketch of the model proposed for the solution of separation prob
- ith inexpensive interpolations from surrounding grid poi
owever this reduction is rather limited, since for each t
tep the solution is still represented on the finest grid (Harten,
996).

To overcome the occurrence of non-physical oscillati
hen using higher-order discretization schemes, an e
ive amount of research in computational fluid dynam
as been directed towards the development of accurat
ounded non-linear convective schemes. In this work we
igh-resolution schemes (HRS), formulated in the con
f the normalized variable and space formulation (NV
f Darwish and Moukalled (1994). These are, by definitio
ounded higher-order schemes and will be briefly desc
elow.

We perform the discretization of Eqs.(3) and (4) in two
tages. Firstly, we compute the space derivatives appear
he right-hand side using different schemes. Then, we inte
xplicitly the resulting initial value problem in order to obt
he grid point values at the next time step. This time integra
s performed with the package LSODA (Petzold, 1983), that is
riefly described below.

For convenience, in the following sections the superscrip
ill be omitted from the dimensionless variables.

.1. Boundary conditions

Eq.(4), theith component mass balance equation, is a sec
rder differential equation and so it needs two boundary co

ions. In separation processes, these boundary condition
ormally obtained from a balance in the vicinity ofx = 0 and
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x = 1.

x = 0 :
1

Pe

∂(ci/cT)

∂x
= ux=0

(
ci − ci,x=0−

cT

)
(5)

x = 1 :
1

Pe

∂(ci/cT)

∂x
= ux=1

(
ci,x=1+ − ci

cT

)
(6)

These type of boundary conditions (Cauchy boundary condi-
tions) are a weighted average of Dirichlet boundary conditions
(which specify the value of the function) and Neumann bound-
ary conditions (which specify the derivative of the function) and
are known in the Chemical Engineering field as Danckwerts
boundary conditions (Danckwerts, 1953).

When the velocity (ux=0 or ux=1) is equal to zero, Eqs.(5) and
(6) are reduced to:

1

Pe

∂(ci/cT)

∂x
= 0 (7)

Eq. (3), the total mass balance equation, is a first-order differ-
ential equation. Depending on the assumptions made, different
boundary conditions can be applied. Following we present the
most common, that should be useful for most of the problems.

2.1.1. Velocity profile in diluted systems
In diluted systems, for example purifications using pressure

swing adsorption or simulated moving bed technologies, the
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(Bird, Stewart, & Lightfoot, 1960):

−∂pT

∂x
= βu (14)

In the case of a permeation module,β = 8µ/r2, whereµ is the
mixture viscosity, given by Wilke’s formula (Bird et al., 1960),
andr the tube (or equivalent tube) radius. Eq.(14) results in the
well-known Hagen–Poiseuille equation. In the case of packed
columns,β should be:

β = 150(1− εb)2

ε3
bd

2
p

(15)

wheredp is the particle diameter andεb the bed void fraction (bed
porosity). Eq.(14)results in the also well-known Blake–Kozeny
equation.

3. Successive stages method

The successive stages method (or mixed cells in series model
or cascade of perfectly mixed tanks) (Fig. 2), is a widely used
method for the solution of separation processes, see, for example
(Coker, Allen, Freeman, & Fleming, 1999; Coker et al., 1998),
in the case of membrane permeation,Cheng and Hill (1985)in
the case of pressure swing adsorption andCharton and Nicoud
(1995)andLudemann-Hombourger et al. (2000)in the case of
s

cces-
s

w ce
i

A

u

w

3

ld not
b stant:

u

.

otal mass balance equation should not be solved, becau
elocity profile can be considered constant:

(∀x) = uin (8)

hereuin is the molar average velocity in the feed stream.

.1.2. Velocity profile without pressure drop (isothermal)
When the pressure drop and temperature variations c

onsidered negligible, two of the following three boundary c
itions must be imposed:

(x = 0) = uin (9)

(x = 1) = uout (10)

∂cT

∂θ
= constant (11

hereuout is the molar average velocity in the outlet stream

.1.3. Velocity profile with pressure drop (non-isothermal)
When the pressure drop and temperature variations can

onsidered negligible, one must impose one boundary con
n x = 0 and other inx = 1, as it follows:

(x = 0) = uin or cT(x = 0) = cT,in (12)

(x = 1) = uout or cT(x = 1) = cT,out (13)

.2. Pressure drop

The pressure drop along a packed column or a hollow
ermeation module can be described by the following equ
he

e

e
n

r

imulated moving bed.
The equivalent total mass balance equation using the su

ive stages method is given by the following equation:

∂ck
T

∂θ
= −n(ukck

T − uk−1ck−1
T ) −

nc∑
i=1

Nk
i , k = 1, n (16)

heren is the number of stages. Theith component mass balan
s given by:

∂ck
i

∂θ
= −n(ukck

i − uk−1ck−1
i ) − Nk

i (17)

nd the pressure drop equation is given by:

k = −n

(
pk+1

T − pk
T

β

)
(18)

hereck
T =

nc∑
i=1

ck
i , c

k
T = pk

T/T k.

.1. Velocity profile in diluted systems

In diluted systems, the total mass balance equation shou
e solved, since the velocity profile can be considered con

k = uin, for k = 1, n (19)

Fig. 2. Successive stages method applied to a separation process
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3.2. Velocity profile without pressure drop (isothermal)

Boundary conditions:∂cT/∂θ = cθ
T andu0 = uin. The velocity

profile is calculated by the following equation:

uk = uk−1 − 1

ncT

(
cθ

T +
nc∑
i=1

Nk
i

)
, k = 1, n (20)

Boundary conditions:∂cT/∂θ = cθ
T andun = uout. The velocity

profile is calculated by the following equations:

u0 = 0, uk = uk−1 − 1

ncT

(
cθ

T +
nc∑
i=1

Nk
i

)
,

k = 1, . . . , n, γ = uout − un, uk = uk + γ,

k = 1, . . . , n (21)

Boundary conditions:u0 = uin andun = uout. The velocity profile
is calculated by the following equations:

cθ
T = −cT(uout − uin) +

n∑
k=1

nc∑
i=1

(Nk
i �xk) (22)

uk = uk−1 − 1

ncT

(
cθ

T +
nc∑
i=1

Nk
i

)
, k = 1, n − 1 (23)

3

n:

u

B

u

u

B

p

p

T fol-
l

4

bles
( e vo
u his i

Fig. 3. Finite volume method applied to a separation process.

the reason why it has been successfully used for heat transfer
and mass flow problems.

Fig. 3 presents the finite volume discretization method in a
schematic form.uk

F is the velocity in the facek and ck
F,i the

concentration ofi species in the facek.
The equivalent total mass balance equation using the finite

volume method is given by the following equation:

∂
ck
T

∂θ
= −uk

Fck
T,F − uk−1

F ck−1
T,F

�xk
−

nc∑
i=1



Nk

i , k = 1, n (30)

where�xk is the volume ink stage. And the partial mass balance
is given by:

∂
ck
i

∂θ
= 1

Pe

ck
T,F(ck

i /c
k
T)′F − ck−1

T,F (ck−1
i /ck−1

T )′F
�xk

− uk
Fck

i,F − uk−1
F ck−1

i,F

�xk
− 


Nk
i (31)


ck
i is the cell average concentration that is a function ofck

i as it
follows (Leonard, 1995):


ck
i = ck

i + (�xk)
2

24
(ck

i )′′ + (�xk)
4

1920
(ck

i )
(iv) + · · · (32)

(ck
i /c

k
T )′F is the derivative of (ck

i /c
k
T) in the facek and is a function

o tion
(

(
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fl Two
d used:
.3. Velocity profile with pressure drop (non-isothermal)

The velocity profile is calculated by the following equatio

k = −n

(
pk+1

T − pk
T

β

)
(24)

oundary conditions:p0
T = pT,in andpn

T = pT,out

in = −2n

β
(p1

T − pT,in) (25)

out = −2n

β
(pT,out − pn

T) (26)

oundary conditions:u0 = uin andun = uout:

T,in = β

2n
uin + p1

T (27)

T,out = pn
T − β

2n
uout (28)

he pressure profile is calculated by the integration of the
owing equation:

∂ck
T

∂θ
= −n

(
ukck

T − uk−1ck−1
T

)
−

nc∑
i=1

Nk
i , k = 1, n (29)

. Finite volume method

In finite volume method the values of the conserved varia
for example: molar concentration) are averaged across th
me and the conservation principle is always assured. T
l-
s

f the neighboring cells. Using a second-order approxima
central difference scheme—CDS2) we obtain:

ck
i /c

k
T)′F = (ck+1

i /ck+1
T ) − (ck

i /c
k
T)

(1/2)(�xk+1 + �xk)
(33)

k
i,F is the concentration of speciesi in the facek and is a function
f the neighboring cells, as follows:

k
i,F = f (ck−1

i , ck
i , c

k+1
i , ck+2

i ) and ck
T,F =

nc∑
i=1

ck
i,F (34)

everal methods have been proposed in the literature for th
ulation ofck

i,F (concentration of speciesi in the facek), such
s the first-order upwind differencing scheme (UDS) of Cou
l al. (1952),ck

i,F = ck
i , i = 1, . . ., nc, the second-order line

pwind scheme (LUDS) ofShyy (1985), ck
i,F = 3

2ck
i − 1

2ck−1
i ,

= 1, . . ., nc, or the third-order QUICK scheme ofLeonard
1979), ck

i,F = 1
2(ck+1

i + ck
i ) − 1

8(ck+1
i + 2ck

i + ck−1
i ), i = 1, . . .,

c, which are all upwind biased. Central schemes are often
uch as the second-order central (CDS2),ck

i,F = 1
2(ck+1

i + ck
i ),

= 1, . . ., nc, or the fourth-order central differences (CDS
ll these methods, with the exception of the first-order U
uffer from lack of boundedness and, for highly convec
ows, the occurrence of unphysical oscillations is usual.
ifferent bounded approaches are nowadays commonly
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high-resolution schemes (HRS) and weighted essentially non-
oscillatory (WENO) schemes. These are, by definition, bounded
higher-order schemes and will be briefly described below.

4.1. Velocity profile in diluted systems

In diluted systems, the total mass balance equation should
not be solved, because the velocity profile can be considered
constant:

u0
F = u0 (35)

4.2. Velocity profile without pressure drop (isothermal)

Boundary conditions:∂cT/∂θ = cθ
T andu0

F = uin. The veloc-
ity profile is calculated by the following equation:

uk
F = uk−1

F − �xk

cT

(
cθ

T +
nc∑
i=1

Nk
i

)
, k = 1, n (36)

Boundary conditions:∂cT/∂θ = cθ
T andun = uout. The velocity

profile is calculated by the following equations:

u0
F = 0, uk

F = uk−1
F − �xk

cT

(
cθ

T +
nc∑
i=1

Nk
i

)
,

k

k

B -
fi

c

u

4

sur
d

u

w

c

B

u

u

Boundary conditions:u0
F = uin andun

F = uout:

pT,in = β�x1

2
uin + p1

T,F (44)

pT,out = pn
T,F − β�xn

2
uout (45)

The equations presented for the boundaries(44)and(45)are only
first-order accurate. That should not be a problem in common
separation problems. However for processes with high pressure
drop these equations should be replaced by at least a second-
order accurate approximation.

5. HRS and WENO schemes

As mentioned before, the application of conventional higher-
order discretization schemes to the advective term (convection
term) of hyperbolic or parabolic equations dominated by con-
vection is not adequate, due to the occurrence of non-physical
oscillations.

In order to overcome this issue, an extensive amount of
research has been directed towards the development of accurate
and bounded non-linear convective schemes. Several discretiza-
tion schemes were proposed on the total variation-diminishing
framework (TVD) (Harten, 1983; Shyy, 1985) and more recently
o
a lation
(

-
i
a the
u ich is
i wn in
F

d as
(

y

w
o-

p RT
( in
s

y

= 1, . . . , n, γ = uout − un
F, uk

F = uk
F + γ,

= 1, . . . , n (37)

oundary conditions:u0
F = uin andun

F = uout. The velocity pro
le is calculated by the following equations:

θ
T =

n∑
k=1

nc∑
i=1

(Nk
i �xk) − cT(uout − uin) (38)

k
F = uk−1

F − �xk

cT

(
cθ

T +
nc∑
i=1

Nk
i

)
, k = 1, n − 1 (39)

.3. Velocity profile with pressure drop (non-isothermal)

Using a second-order approximation (CDS2), the pres
rop equation is given by:

k
F = − 2

β

pk+1
T − pk

T

�xk+1 + �xk
(40)

here

k
T =

nc∑
i=1

ck
i , ck

T = pk
T

T k
(41)

oundary conditions:p0
T,F = pT,in andpn

T,F = pT,out

0
F = uin = − 2

β

p1
T − p0

T,F

�x1 (42)

n
F = uout = − 2

β

pn
T,F − pn

T

�xn
(43)
e

n the normalized variable formulation (NVF) (Leonard, 1987)
nd its extension, the normalized variable and space formu
NVSF) ofDarwish and Moukalled (1994).

Considering a general grid, as illustrated inFig. 4. The label
ng of the nodes depends on the local velocity,uF, calculated
t face F. For a given face F, the U and D nodes refer to
pstream and downstream points, relative to node P, wh

tself upstream to the face F under consideration, as sho
ig. 4.

According to the NVSF, the face values are interpolate
Darwish and Moukalled, 1994):

F = yU + ỹF(yD − yU) (46)

herey is the convected variable (for exampleci).
The normalized face value, ˜yF, is calculated using an appr

riate non-linear limiter. As a example we present the SMA
Gaskell & Lau, 1988) limiter (third-order convergence
mooth regions):

˜F = max

[
ỹP, min

(
x̃F(1 − 3x̃P + 2x̃F)

x̃P(1 − x̃P)
ỹP,

x̃F(1 − x̃F)

x̃P(1 − x̃P)
ỹP

+ x̃F(x̃F − x̃P)

1 − x̃P
, 1

)]
(47)

Fig. 4. Definition of local variables.
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and the MINMOD limiter (Harten, 1983) (second-order conver-
gence in smooth regions):

ỹF = max

[
ỹP, min

(
x̃F

x̃P
ỹP,

1 − x̃F

1 − x̃P
ỹP + x̃F − x̃P

1 − x̃P

)]
(48)

where the normalized variables ˜yP, x̃P and x̃F are calculated
using:

ỹP = yP − yU

yD − yU
, x̃P = xP − xU

xD − xU
, x̃F = xF − xU

xD − xU
(49)

More details on this issue, and other high-resolution schemes,
can be found in the works ofDarwish and Moukalled (1994)
andAlves, Oliveira, and Pinho (2003).

According to the third-order WENO scheme, the face fluxes
are interpolated as (Shu, 1997; Shu & Osher, 1988, 1989):

yF = w0y
0
F + w1y

1
F (50)

with y0
F = 1

2(yD + yP) (CDS2),y1
F = 3

2yP − 1
2uU (LUDS) and

wi defined by:

wj = αj

α0 + α1
, αj = dj

(ε + βj)2
, j = 0, 1 (51)

whereε > 0 is introduced to avoid the denominator became zero.
We takeε = 1× 10−6 in all our numerical tests. The smoothness
m
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module. An extensive revision is presented byKovvali, Vemury,
Krovvidi, and Khan (1992). The analytical solution of mass and
momentum balance equations can only be obtained under some
assumptions.Weller and Steiner (1950)present an analytical
solution, based on the following assumptions: plug-flow pattern,
constant and composition independent permeability and negli-
gible pressure drop andSmith, Hall, Freeman, and Rautenbach,
1996assuming perfectly mixed pattern in the permeate side.

The numerical solution can be obtained using series approx-
imations and numerical methods applied to the solution of ordi-
nary differential equations.Kovvali et al. (1992)and Boucif,
Majumdar, and Sirkar (1984)present models for binary mix-
tures andPettersen and Lien (1994)andChang, Min, Oh, and
Moon (1998)for multicomponent mixtures using series approx-
imations.Kovvali et al. (1992), Pan (1983)andChen, Li, and
Teo (1995)have solved the model equations using the shoot-
ing method, which consists in solving the boundary conditions
problem as an initial condition problem, with an iteration strat-
egy. This approach is not very efficient and the convergence is
not always assured.

Kaldis, Kapantaidakis, Papadopoulos, and Sakellaropoulos
(1998)andTessendorf, Gani, and Michelsen, 1999have used the
orthogonal collocation method for solving the model equations.
This strategy conduces to a system of non-linear equations which
convergence is very dependent on the estimated composition
profile.Coker et al. (1999, 1998)andThundyil and Koros (1997)
h stages
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easurement is defined by:

0 = (yD − yP)2, β1 = (yP − yU)2 (52)

ndd0 = 2
3 andd1 = 1

3.

. Temporal integration

The time integration of the resulting system of ordinary
erential equations (ODEs initial value problem) can be acc
lished using solver LSODA (Petzold, 1983). This routine solve

nitial boundary problems for stiff or non-stiff systems of fir
rder ODEs. For non-stiff systems, it makes use of the Ad
ethod with variable order (up to 12th order) and step size, w

or stiff systems it uses the Gear (or BDF) method with vari
rder (up to 5th order) and step size. In our test cases the

n time integration was always set small enough to ensure
he numerical errors are mainly due to inaccuracies in sp
iscretization.

. Application examples

.1. Steady-state membrane permeation processes

The use of membrane technology in gas separation has g
ignificantly in the last decades due to the development of h
elective materials and the lower power consumptions invo
Mendes et al., 2003). The hollow-fibber membrane separat
s based on the different permeability coefficients of each c
onent through a selective barrier, porous or non-porous (de

Several models have been developed along the last
or the simulation and optimization of a membrane permea
r
t
l

n

-
).
rs

ave solved the model equations using the successive
ethod (upwind differencing scheme). The system of equa
btained in the case of constant permeability is linear, an

t can be solved very efficiently. However, a higher numbe
esh points is necessary, i.e. 100–1000, see (Coker et al., 1998),

or obtaining an accurate solution, which conduces to a h
emory consumption, namely in multicomponent systems
The numerical solution of permeation models has t

mportant issues that should be discussed: the convergen
he non-linear system of equations that results from the
retization of the ordinary differential equations, the treatm
f boundary conditions and the accuracy of the discretiza
cheme.

The discretization of the model equations using high o
chemes conduces to a system of non-linear algebraic
ions. The solution of this system using, for example,
ewton–Raphson method converges to the exact solution

f a good initial guess is used. The solution of the problem
on-steady-state, as proposed, eliminates this problem.

The treatment of boundary conditions is also an impo
ssue. The main problem occurs when solving the ordinary
erential equation for the permeate side with no purge, u
nite difference methods. In this case the concentration inx = 0
cocurrent pattern) orx = 1 (countercurrent pattern) is not know
nd should be estimated based on the retentate/permeate

ions. This problem does not occur when using the succe
tages method and the finite volume method.

The discretization scheme used is the final important i
hat should be pointed out. The successive stages metho
rst-order accurate method and therefore it is not recomme
s will be seen in the following illustration examples.
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Fig. 5. Sketch of the model proposed for the solution of membrane permeation
problems.

7.1.1. Mass exchange
The mass exchanged between the retentate and permeate,

considering that the resistance to the mass transfer is only
imposed by the selective barrier, and that the membrane does
not have any defect and permeability coefficient is constant, can
be written as follows:

Ni = AT

AS
Li

pR
i − pP

i

δF
(53)

whereLi is the speciesi permeability coefficient,δF the mem-
brane thickness,AT mass exchange perimeter andAS the flow
section area. The subscripts R and P mean retentate and permeate
side, respectively.

7.1.2. Boundary conditions
Following we present the boundary conditions for different

flow patterns and 1/Pe = 0 (Fig. 5):

• Cocurrent flow without recycle
• Retentate

x = 0 : uR = uR
in, yR

i = yR
i,in;

x = 1 : pR
T = pR

T,out• Permeate
x = 0 : uP = 0; x = 1 : pP

T = pP
T,out

• Cocurrent flow with recycle/purge

•

Table 1
Permeance and feed composition for air separation simulations (Coker et al.,
1998)

Component Feed mole fraction Permeability coefficient (GPU)a

N2 0.7841 3.57
O2 0.2084 20
CO2 0.0003 60
H2O 0.0072b 1000

a 1 GPU = 3.346× 10−13 kmol/m2 s Pa.
b The water composition corresponds to saturation at 40◦C and 10 atm total

pressure.

7.1.3. Results and discussion
The simulations results described in this section are for coun-

tercurrent contacting. We present as test case the air separation
in a polysulfone membrane. The permeances of the membrane
to air gas components are presented inTable 1. The membrane
permeances are selected to be similar to those which might be
observed with a polysulfone membrane with an effective sep-
arating layer thickness of approximately 0.1�m (Coker et al.,
1998).

Fig. 6presents the simulation results for countercurrent con-
tacting without recycle. The effect of mesh refinement in the
nitrogen purity is shown as a function of overall residue recovery
(stage cut).Fig. 6a concerns the results obtained using QUICK

Fig. 6. Effect of mesh refinement on nitrogen purity in retentate (pR
T/pP

T = 5):
(· · ·) n = 1, 2, 4, 8, (—) reference solution. (a) QUICK scheme and (b) UDS
scheme (successive stages method).
• Retentate

x = 0 : uR = uR
in, yR

i = yR
i,in;

x = 1 : pR
T = pR

T,out

• Permeate

x = 0 : uP = uP
in, yP

i = yP
i,in;

x = 1 : pP
T = pP

T,out

Countercurrent flow without recycle
• Retentate

x = 0 : uR = uR
in, yR

i = yR
i,in;

x = 1 : pR
T = pR

T,out

• Permeate
x = 1 : uP = 0; x = 0 : pP

T = pP
T,out
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Fig. 7. Effect of mesh refinement on nitrogen purity in retentate (pR
T/pP

T = 5):
QUICK scheme and UDS scheme (successive stages method).

discretization scheme andFig. 6b concerns the results obtained
using the successive stages method (Coker et al., 1998).

With the proposed method it is possible to obtain an accept-
able solution with only eight discretization volumes for all values
of overall residue recovery. The successive stages method con-
verges slowly to the reference solution, namely for high values
of stage cut.Coker et al. (1998)mentions that in some cases,
when the stage cut is extremely high (>90%), at least 1000 stages
are required to obtain the problem solution.

Fig. 7 presents the error of the solution,φ, as a function of
the number of stages/discretization volumes. In this figure,φ is
defined as follows:

φ = |PurR − Puri|
|PurR − Purone stage| (54)

where PurR is the reference value of purity in the retentate,
Purone stagethe purity in the retentate obtained using one stage
and Puri the purity obtained usingi stages (discretization vol-
umes). FromFig. 7 it is possible to see that UDS (successive
stages method) converges to the reference solution with onl
first-order accuracy and the QUICK scheme converges approx
imately with third-order accuracy. For obtaining a solution with
an accuracy equivalent to eight volumes using the QUICK
scheme it is necessary to use 1000 successive stages. And f
obtaining a solution with an accuracy equivalent to 16 volumes
u ssiv
s

at th
s ge-c
v mbe
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ame
t rder
W eme
a This
s ICK
s ted
a ent,
w e. In

the case of non-smooth problems (high convective problems)
QUICK scheme conduces to the appearance of non-physical
oscillations in the solution, and so the SMART scheme is
recommended.

As a conclusion on this topic, we should remark two aspects.
A correct implementation of the finite volume method as it
was presented, using a third-order accurate approximation (as
QUICK scheme), conduces to accurate solutions with a modest
number of mesh points (discretization volumes). The local and
global flux conservation, that is intrinsic to the finite volume
method, is a key issue to the success of the method.

7.2. Cyclic adsorption processes

Cyclic adsorption processes are based on the selective reten-
tion (based on adsorption equilibrium selectivity or diffusion
selectivity) of one or more components in a gas mixture,
with the adsorbent regeneration being performed by total or
partial pressure decrease (pressure swing adsorption—PSA,
vacuum swing adsorption—VSA or vacuum pressure swing
adsorption—VPSA) or by temperature increase (temperature
swing adsorption—TSA). These processes are intrinsically
dynamic, operating in a periodic fashion with a fixed (or vari-
able) period.

The models of cyclic adsorption processes can only be solved
analytically in the case of purifications, using the method of
c l
& ,
i nd the
a and
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sing QUICK scheme it is necessary to use 7800 succe
tages.

From this simple example and analysis, it can be seen th
uccessive stages method should not be used for high sta
alues and/or multicomponent mixtures, due to the high nu
f equations that need to be solved.

We have tested some other high-resolution schemes, n
he SMART scheme, MINMOD scheme and the third-o

ENO scheme. The results obtained using SMART sch
re identical to the ones obtained using QUICK scheme.
eems to be obvious since the SMART scheme uses QU
cheme in smooth regions (note that the problem presen
lways smooth), the MINMOD and third-order WENO pres
ith mesh refinement, only a second-order convergenc
,

y
-

or

e
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haracteristics, under the following ideal conditions (Knaebe
Hill, 1985; Shendalm & Mitchell, 1972): isothermal system

nstantaneous equilibrium between the gaseous phase a
dsorbed phase, negligible pressure drop, linear isotherm

rozen concentration profile during pressurization and de
urization stages. In the case of separations, the assum
entioned before are not usually valid, and so the syste
artial differential equations must be solved numerically.

Usually, in cyclic adsorption processes simulation, one o
ollowing strategies is applied to solve the model equations
rst one consists in the simultaneous space and time discr
ion and posterior resolution of the resulting non-linear algeb
ystem of equations, for example: double collocation (Raghavan
Ruthven, 1985) and space and time finite differences (Cen &

ang, 1985; Yang & Lee, 1998). The other strategy consists
he spatial discretization and subsequent integration of the r
ng initial value system of ordinary differential equations (OD
ith an appropriate integrator (Finlayson, 1992): method of lines

MOL). Normally the integrator used is based on the BDF (b
ard differentiation formulas), known as Gear formulas (Gear,
971), that are suitable for the solution of stiff problems (Byrne
t al., 1977; Hindmarsh, 1974; Petzold, 1983) or Runge–Kutta
ehlberg method (RKF45—Fehlberg, 1968) that is unsuitabl

or the solution of stiff problems but commonly used in cy
dsorption processes simulation.

Different numerical methods have been applied to the s
ion of cyclic adsorption processes using the method of l
uccessive stages method (Cheng & Hill, 1985), orthogona
ollocation (Arvind, Farooq, & Ruthven, 2002; Raghavan
assan, & Ruthven, 1985), finite differences (Ko & Moon,
000), orthogonal collocation on finite elements (Da Silva,
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Silva, & Rodrigues, 1999), Galerkin finite elements (Teague &
Edgar, 1999). The use of high-resolution schemes has been men-
tioned in the work ofCruz et al. (2003).

In a kinetic based separation, the method used in spatial
discretization is not fundamental in order to obtain an accu-
rate solution, since the problem does not normally involve a
sharp moving front. In this case, the orthogonal collocation and
Galerkin methods are usually better than the others, as they have
a higher convergence. However, in an equilibrium based separa-
tion, which is the most common separation type, the appropriate
choice of discretization method is fundamental in order to obtain
an accurate solution. In this case, the problem involves a sharp
moving front, which is steeper as the selectivity increases and/or
the dispersive effects (mass transfer resistance, for example)
decrease. The use of bounded methods, as the successive stages
approximation, is important in order to obtain stable solutions
without oscillations in the computation domain. The appearance
of oscillations in cyclic adsorption process simulation could con-
duce to a divergence in the integrator as well as mathematical
impossibility when calculating the adsorption equilibrium con-
centration.

The use of high-resolution schemes conduces always to stable
solutions with a high convergence to the reference solution, as
will be seen in the following examples.
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Fig. 8. Sketch of a small pressure swing adsorption unit.

qi,s= f(pr, pi). In dimensionless form:

dq̄∗
i

dθ
= ϕαi,M(q∗

i,s − q̄∗
i ) (57)

whereϕ = τbkref andαi,M = De
i,M/Dref = ki/kref. The subscript

“ref” means reference condition.

7.2.3. Boundary conditions
Cyclic adsorption processes are intrinsically dynamic, oper-

ating in a periodic fashion, and so the boundary conditions
change with time. In this work we propose the study of a small
pressure swing adsorption unit as described bySantos et al.
(2004).

Fig. 8presents a sketch of this unit.
Since there are no valves to control the duration of pressur-

ization, this step depends on the difference between the pressure
inside the storage tank (ST inFig. 8) and inside the adsorption
column. Due to the use of check valves, production will start
when the pressure inside the columns is higher than inside the
product tank.

The unit can operate at two different stages: stage 1 where
pressurization and production take place, and stage 2 where the
column is depressurized and purged.Table 2presents the posi-
tion of the three-way valves in the base of the columns for each
stage.

2 is
d en-
s t “*”
w

T
F

V
V

.2.1. Mass exchange rate
In cyclic adsorption processes the mass exchange

etween the particle and its surroundings is normally give
he following expression:

i = 1 − εb

εb

[
εp

∂c̄i

∂t
+ ρs

∂q̄i

∂t

]
(55)

hereεb is the bed void fraction (ratio between the free volu
nd the total volume),εp the particle porosity, ¯qi the averag
olar concentration in the adsorbed phase and ¯ci the molar aver
ge concentration in the fluid phase.

.2.2. Intra-particle mass transfer
Different approximations can be considered for des

ng the intra-particle mass transfer. In this work we use
inear driving force (LDF) approximation (Glueckauf, 1955),
ssuming instantaneous equilibrium between the inter-pa
as phase and the intra-particle gas phase (∂c̄∗

i /∂θ = ∂c∗
i /∂θ).

his model can be derived from the intra-particle mass ba
quation, which is a partial differential equation, conside
arabolic profile inside the particle (Liaw, Wang, Greenkorn, &
hao, 1979):

dq̄i

dθ
= ki(qi,s − q̄i) and

∂c̄i

∂θ
= ∂ci

∂θ
(56)

hereki is the LDF coefficient,ki = 15De
i,M/r2

p,De
M,i the effec-

ive homogeneous diffusion coefficient,rp the particle radius
i,s the molar concentration in the particle surface (adso
hase) that is related with the molar concentration in the i
article gas phase through the adsorption equilibrium isoth
-
:

When column 1 is pressurizing/producing and column
epressurizing/ purging the boundary conditions in the dim
ionless form are (for the sake of simplicity the superscrip
as omitted):

able 2
low direction at each valve for each step

Stage 1 Stage 2

1 1→ 2 2→ 3
2 2→ 3 1→ 2
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• Column 1

x = 0 :
1

Pe

∂yi

∂x
= uin(yi − yi,in) (58)

u = CF
v

p1
T

f (pH
T , p1

T, T, M) (59)

x = 1 :




∂yi

∂x
= 0, p1

T ≥ p2
T

1

Pe

∂yi

∂x
= u(yi − yi|x=1,column 2), p1

T < p2
T

(60)

u = CP
v

p1
T

f (p1
T, p2

T, T ∗, M) + uST
in pST

T

εbp
1
T

, p1
T ≥ p2

T,

u = −CP
v

p1
T

f (p2
T, p1

T, T, M), p1
T < p2

T (61)

Eq.(59)can be replaced by a correlation that relates the flow
rate given by a compressor with the pressure inside the adsorp-
tion column.

• Column 2

x = 0 :
∂yi

∂x
= 0 (62)

u = −CV
v f (p2, pL, T, M) (63)

ream

d by

Table 3
Adsorption equilibrium isotherm parameters (Santos et al., 2004)

N2 O2 Ar

qmax (mol/kg) 3.0704 3.0704 3.0704
bi (×105 Pa−1) 0.1015 0.0369 0.0340
�H/� (K) 1767 2501 1791

and

f (pu, pd, T, M) =




1.179

√
p2

u − p2
d

pdM
T, pd > 0.53pu

pu

√
1

pdM
T, pd ≤ 0.53pu

(69)

whereKv is the valve parameter,pu andpd are the dimension-
less upstream and downstream pressures, respectively,T the
dimensionless temperature andM the molecular weight of the
gas passing through the orifice. The superscript “0” stands for
standard temperature and pressure conditions (STP).

7.2.4. Results and discussion
The simulations were performed for the oxygen production

from air (nitrogen, 78%; oxygen, 21%; argon, 1%) using the 13X
zeolite type Oxysiv 5 from UOP. The cycles optimized were the
ones of the oxygen concentrator and of the small PSA unit pre-
sented inSantos et al. (2004). The single-component adsorption
equilibrium isotherms parameters (Langmuir isotherm) are pre-
sented inTable 3.

Since oxygen and argon capacities are very similar, feed was
considered to be 78% of nitrogen and 22% of a pseudo-binary
mixture of oxygen and argon.

The operating conditions, the physical characteristics and
v n in
T

.,
2

u

I ula-
t tion
fl rod-
u y the
c hysi-
c ent.
F e the
c nd to
d er of

T
O e PS

T

3 .0394
p2
T

T T

x = 1 :




∂yi

∂x
= 0, p2

T ≥ p1
T

1

Pe

∂yi

∂x
= u(yi − yi|x=1,column 1), p2

T < p1
T

(64)

u = −CP
v

p2
T

f (p1
T, p2

T, T, M), p1
T ≥ p2

T,

u = CP
v

p2
T

f (p2
T, p1

T, T, M) + uST
in pST

T

εbp
2
T

, p1
T < p2

T (65)

where the dimensionless average molar velocity of the st
entering the storage tank,uST

in , is given by:

uST
in pST

T = CST
v f (pT, pST

T , T, M) (66)

The molar velocity across a valve orifice was describe
(Chou & Huang, 1994; Teague & Edgar, 1999):

up = Cvf (pu, pd, T, M) (67)

whereCv is the valve parameter given by:

Cv = 2.035× 10−2 Tref

εbAuref
√

pref

p0

T 0Kv (68)

able 4
perating conditions, physical characteristics and valve coefficients of th

(◦C) pH
T (MPa) pL

T (MPa) tpres/prod(s) KP
v

7 0.3 0.1 9.0 0
alve coefficients considered in the simulations are give
able 4.

The feed flow rate given by the compressor is (Santos et al
004):

inpT = 10−3p0T

60εAT 0urefpref
[0.0731(pTpref)

3 − 0.288(pTpref)
2

− 6.517pTpref + 91.370] (70)

n Table 5we present the effect of mesh refinement in the sim
ion results (oxygen purity and recovery) for different produc
ow rates using QUICK scheme. As we can see, for low p
ct flow rates, oxygen purity is higher than 1, simultaneousl
oncentration profile inside the column present some unp
al oscillations, which do not disappear with mesh refinem
or higher product flow rates the concentration profile insid
olumn tends to be smoother and unphysical oscillations te
isappear. These results give us an indication of the numb

A unit (Santos et al., 2004)

KST
v KV

v L (cm) D (cm) LST (cm)

0.15 0.55 29.5 8.0 12.5
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Table 5
Effect of mesh refinement in simulation results (oxygen purity and recovery) for
different production flow rates using QUICK scheme

n 1 dm3
PTN/min 3 dm3

PTN/min 5 dm3
PTN/min

Rec Pur Rec Pur Rec Pur

4 0.070 1.213 0.179 1.045 0.247 0.844
8 0.060 1.041 0.178 1.039 0.245 0.837

16 0.057 0.995 0.172 1.006 0.228 0.779
32 0.057 1.000 0.171 1.001 0.222 0.757
64 0.057 1.000 0.171 1.000 0.222 0.756

128 0.057 1.000 0.171 1.000 0.222 0.756

volumes that are required to accurately simulate this separation
unit. A number of 32 volumes are apparently acceptable.

In Fig. 9 the error of the solution,φ, is presented as a
function of the number of discretization volumes for two dif-
ferent schemes: QUICK and SMART for a product flow rate of
1 dm3

PTN/min. In this figure,φ is defined as it follows:

φi = |Xi − Xref
i |

|XQUICK
i − Xref

i |
(71)

whereXref
i is the reference oxygen purity (or recovery) in the

outlet stream,Xi the oxygen purity (or recovery) usingi dis-
cretization volumes,XQUICK

i the oxygen purity (or recovery)
using four discretization volumes and QUICK scheme. As we
can see, the error in the simulation results using QUICK scheme
tends, with mesh refinement, to an asymptotic error which is not
obvious from the analysis ofTable 2. Note that this is due to the
unbounded properties of QUICK scheme.

In Fig. 10we present the comparison between experimental
results, simulation results using SMART scheme, and the sim-
ulation results bySantos et al. (2004). We can observe a good
agreement between experimental and simulation results.

Our strategy was also used to analyse the influence of the
discretization scheme and mesh refinement in the results of
numerical optimization of such a unit using six decision vari-
ables:L/LST (assuming that the area of storage tank and columns

F eady-
s

Fig. 10. Purity and recovery as a function of production flow rate: (�) SMART
scheme, (©) Santos et al. (2004)values and (�) experimental.

are the same)θpres/prodCF
v , CST

v , CP
v and CV

v . In Table 6we
present the optimization results for a temperature of 20◦C, for
details seeSantos et al. (2004). A φ value of 110 was considered
and a restriction of oxygen + argon purity of 0.99 was imposed
in the optimization. The time cycle is the variable that is more
affected with mesh refinement. The maximum recovery obtained
increases with mesh refinement as expected.

As a conclusion on this topic, we should remark that it should
be avoid the use of unbounded schemes in the solution of cyclic
adsorption processes, namely when the problem involves sharp
moving fronts, since with this schemes the error in the problem
solution decreases with mesh refinement very slowly (in the
case of QUICK scheme the third-order accuracy is completely
lost).

7.3. Simulated moving bed

Simulated moving bed (SMB) technology (Boughton, 1961)
is an emerging technology for the separation of life science
products, such as pharmaceuticals, proteins, enzymes, food
and fine chemicals, where standard thermal unit operations
like distillation are not suitable. It provides a powerful tool
for the separation of multicomponent mixtures in which the
components have different adsorption affinities, especially
when they show separation factors near one and when high
r

( dro-

T
E

n

52
88
17
24
24

1 24
ig. 9. Effect of mesh refinement on oxygen purity and recovery (cyclic st
tate): (�) purity and (©) recovery, using QUICK and SMART schemes.
esolutions, yields and purities are required.
Originally developed as an industrial process byBroughton

1984) for the large-scale separation of C8 aromatic hy

able 6
ffect of mesh refinement in optimization results using SMART scheme

L/LST θpres/prod CF
v CST

v CP
v CV

v Rec

4 2.06 0.73 155 73.4 9.0 229 0.2
8 2.09 0.90 155 73.4 8.9 229 0.2

16 2.10 1.06 155 73.4 8.9 229 0.3
32 2.02 1.10 155 73.4 8.8 229 0.3
64 2.10 1.11 155 73.4 8.9 229 0.3
28 2.10 1.11 155 73.4 8.9 229 0.3
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carbons and sugars, SMB is now considered as the process of
choice for the separation of optical isomers.

In the case of petrochemicals (C8 aromatics) and food (C6
sugars) industries the separation factors are very large, the col-
umn efficiency does not need to be high and there are solid
phases available on which the adsorption equilibrium isotherms
are almost linear within the entire useful range of concentrations.
The situation is, however, quite different for the enantiomeric
separations considered in the pharmaceutical industry. In most
cases, the separation factor is low and the isotherms are not usu-
ally linear.

The type of isotherm influences substantially the structure
of the resulting mathematical problem. Processes with lin-
ear adsorption isotherms can be modeled and simulated much
more easily than those with non-linear isotherms (Zhong, Yun,
Khattabi, & Guiochon, 1997).

Different numerical methods have been applied to the sim-
ulated moving bed technology using the method of lines: suc-
cessive stages method (Charton & Nicoud, 1995; Ludemann-
Hombourger et al., 2000), finite differences (Kaczmarski &
Antos, 1996), orthogonal collocation (Wang & Ching, 2004) and
orthogonal collocation in finite elements (Leão & Rodrigues,
2004; Minceva, Pais, & Rodrigues, 2003).

Recently,Leão and Rodrigues (2004)presented a compar-
ative study of different numerical strategies. For the solution
of dynamic models they used two different strategies: the pub-
l lines
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Fig. 11. Representation of simulated moving bed process.

7.3.3. Results and discussion
Simulated moving bed uses a variable number of columns,

distributed by four different sections as illustrated inFig. 11.
In-between these sections there are four nodes: extract outlet,
feed inlet, raffinate outlet and desorbent inlet.

The mass balance at the nodes are:

• Desorbent node:

QIV + QD = QI ; cout
i,IVQIV = cin

i,IQI, i = A, B

• Extract node:

QII = QI − QE

• Feed node:

QII + QF = QIII ; cout
i,II QII + ci,inQin = cin

i,III QIII ,

i = A, B

• Raffinate node:

QIII − QR = QIV

HereQj is the liquid flowrate throught sectionj andci,in the
s
nd-
r the
fig-

ribed
nd
ted in

ua-
t tion
o nd
S ICK
s entra-
t sent
ic domain package PDECOL, that uses the method of
nd a B-splines finite element collocation procedure and
ASSL public domain stiff solver (based on backward differ

iation formulae) for time integration and orthogonal colloca
n finite elements for spatial discretization (Hermite polyno
ls). For the steady-state models they use the COLDAE
OLNEW public domain solvers.

.3.1. Mass exchange rate
In simulated moving bed the mass exchange rate betwe

article and its surroundings is given by the following exp
ion:

i = 1 − εb

εb

∂q̄i

∂t
(72)

hereεb is the bed void fraction and ¯qi the average molar co
entration in the adsorbed phase.

.3.2. Intra-particle mass transfer
Different approximations can be considered for descri

he intra-particle mass transfer. In this work we use the li
riving force approximation (Glueckauf, 1955), as in the cas
f cyclic adsorption processes:

dq̄i

dθ
= ki(qi,s − q̄i) (73)

hereki is the LDF coefficient,qi,s the molar concentration in th
article surface (adsorbed phase) that is related with molar
entration in the inter-particle fluid phase through the adsor
quilibrium isotherm:qi,s= f(ci).
-

feed concentration of componenti. The boundary condition
applied to each ofn column are the basic Danckwerts bou
ary conditions. In this work, as test case, we conside
glucose(A)/fructose(B) separation with a 12-column con
uration (3, 3, 3, 3) considering linear isotherms as desc
by Leão and Rodrigues (2004). The operating conditions a
model parameters used in the simulations are presen
Table 7.

In Fig. 12 we present the solution of the model eq
ions using four control volumes in each section (solu
f 32 = 4× 4× 2 algebraic equations) using QUICK (a) a
MART (b) schemes. The solution using the unbounded QU
cheme presents an unphysical overshoot in fructose conc
ion in section II. The bounded SMART scheme does not pre
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Table 7
Model parameters and operating conditions

Model parameters Operating conditions

Peclet number:Pej = ujL/Dax = 2000γ j Feed concentration:
cF
i = 30 g/l

Solid/fluid ratio: (1− εb)/εb = 1.5
Number of transfer units:kiL/uref = 31.5
Ratio between fluid and solid velocities:γ I = 1.0149,

γ II = 0.6122,γ III = 0.7039,γ IV = 0.4252
Isotherm parameters:qA = 0.3401cA, qB = 0.5634cB

Fig. 12. Solution of simulated moving bed model using parameters fromTable 3,
(�) frutose, (©) glucose concentration; (a) solution using QUICK scheme and
(b) solution using SMART scheme; (—) reference solution.

this problem. What is remarkable from the analysis of this figure
is that using only four control volumes the solution is practically
identical to the reference solution (obtained using a very refined
mesh).

In Table 8we present the effect of mesh refinement in sim-
ulation results using SMART scheme. We can see that eight
control volumes in each section (64 algebraic equations) are in
this case sufficient to obtain a good solution. Using finite volume
method the conservation of mass is always ensured.Leão and
Rodrigues (2004)report errors in the mass balance of 3% for
glucose and 4% for fructose using finite elements collocation
(Hermite polynomials) and 0.3% for glucose and 0.4% for fruc-
tose using COLNEW and COLDAE public domain solvers. The
calculation time for a mesh of 16 control volumes is inferior to
one second in a 1.5 GHz Intel Pentium IV® personal computer.

In Fig. 12is presented the error of the solution,φ as a func-
tion of the number of discretization volumes for three different
schemes: Upwind (UDS), MINMOD and SMART. In this figure,
φ is defined as it follows:

φi = |ci − cref
i |

|cUDS
i − cref

i | (74)

wherecref
i is the reference fructose (or glucose) concentration,

ci the fructose (or glucose) concentration usingi discretization
volume andcUDS

i the fructose (or glucose) concentration using
f

con-
v er of
2

F ration
(

Table 8
Effect of mesh refinement, SMART scheme

n t (s) Glucose concentration

Eluent Extract Feed R nate

4 0.1 0.030 0.061 14.00 8
8 0.2 0.000 0.003 14.19 0

16 0.7 0.002 0.015 14.17 9
32 3.3 0.003 0.017 14.17 2
64 14.6 0.003 0.017 14.17
our volumes and UDS scheme.
One more time we can see that SMART scheme has a

ergence order of 3, MINMOD scheme a convergence ord
and upwind has only first-order convergence (Fig. 13).

ig. 13. Effect of mesh refinement: open symbols—fructose concent
extract) and close symbols—glucose concentration (raffinate).

Fructose concentration

affinate Eluent Extract Feed Raffi

9.78 0.014 6.72 13.81 0.15
9.87 0.001 6.83 14.19 0.00
9.85 0.005 6.82 14.18 0.01
9.85 0.005 6.82 14.18 0.02

9.85 0.005 6.82 14.18 0.023
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8. Conclusions

In this work we describe the application of finite volume
method for the solution of separation processes involving
adsorption, absorption and permeation. The algorithm pre-
sented enforces both local and global flux conservation in
space and time. The convection terms can be discretized using
high-resolution schemes, ensuring boundedness. We present
numerical results for three different separation processes:
membrane permeation, pressure swing adsorption and simu-
lated moving bed, to highlight the flexibility, efficiency and
robustness of the proposed formulation.

We have demonstrated the virtues of using an algorithm that
ensures local and global flux conservation in space and time.
Comparatively with other strategies we obtain better solutions
with less number of discretization points, hence, using less com-
putation time and memory requirements.

In the case of membrane permeation we have compared our
results with the successive stages method proposed byCoker et
al. (1998). We have seen that successive stages method has only
first-order of convergence and so, when the stage cut is very high
(>90%), it requires at lest 1000 discretization points to obtain
the problem solution.

In the case of cyclic adsorption processes we simulated a
small pressure swing adsorption unit for oxygen production
described bySantos et al. (2004), for understanding the conver-
g ume
w f the
r ood
a t
a unit
( stud
t opti-
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w ste
d

ered
t
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u ) ar
s tha
t lum
m
t sin
fi for
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SFRH/BD/6817/2001, respectively. The research was also sup-
ported by funds from FCT project POCTI/EQU/38067/2001 and
Growth GRDI-2001-40257.
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