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Abstract

In this work we present a comparison of different discretization techniques, in the context of finite volume formulation, for the solution o
separation processes involving adsorption, absorption and permeation.

The mathematical model developed assumes axially dispersed plug-flow, uniform bed/sorbent/membrane properties along the axial coordi
and negligible radial gradients. The algorithm used enforces both local and global flux conservation in space and time. The discretizatior
convection terms is made using unbounded schemes and bounded high-resolution schemes.

We use the same strategy for simulating three different separation processes: membrane permeation, pressure swing adsorption and sim
moving bed. In the case of membrane permeation we present simulation results of air separation using a polysulfone membrane and com
to ones of Coker et al. [Coker, D. T., Freeman, B. D., & Fleming, G. K. (1998). Modeling multicomponent gas separation using hollow-fibe
membrane contactor&IChE Journal, 44, 1289]. In the case of pressure swing adsorption we study a small pressure swing adsorption unit for ai
separation as described by Santos et al. [Santos, J. C., Portugal, A. F., Magalhaes, F. D., & Mendes, A. (2004). Simulation and optimizatiol
small oxygen pressure swing adsorption urdiigustrial and Engineering Chemistry Research, 43, 8328]. In the case of simulated moving bed we
consider the glucose/fructose separation as describeddyared Rodrigues [lZ®, C. P., & Rodrigues, A. E. (2004). Transient and steady-state
models for simulated moving bed processes: Numerical solut@@ngputers and Chemical Engineering, 28, 1725].

Our simulated results are particularly interesting for the case of transient highly convective separation problems, where standard procedures
lead to the appearance of unphysical oscillations in the computed solution due to the existence of sharp moving fronts.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction ferential equations (ODES) for the sorption rate in the stationary
phase, and eventually, algebraic equations for the sorption equi-
The simulation and optimization of adsorption, absorptionlibrium between phases. The coupled system of partial differen-
and permeation separation processes have been under cldisdequations should be solved numerically, because the analytic
study in the last decad€(uz, Santos, Magad#tes, & Mendes, solution can only be derived for ideal conditions (normally under
2003 Nilchan & Pantelides, 1998urnomo & Alpay, 2000 the following assumptions: isothermal system, instantaneous
Zhang, Hidajat, Ray, & Morbidelli, 2002 due to the devel- equilibrium between the fluid and the stationary phases, neg-
opment of new (ad) (ab) sorbents with high sorption capacityigible pressure drop, linear isotherm and frozen concentration
and selectivity §herman, 199%nd membranes (polymeric and profile during pressure variation stages).
carbon molecular sieve based) with high permeabities and selec- For solving such system of equations, two different numer-
tivities (Mendes, Magal&es, & Costa, 2003 ical approaches are normally used. The first one consists on
Transient sorption separation processes can be modelglde simultaneous space and time discretization of each PDE,
by using convection-dominated partial differential equationsand then resolution of the resulting system of non-linear alge-
(PDEs) for mass conservation in the fluid phase, ordinary difbraic equations (for example: double collocation). The other
approach consists on the spatial discretization of each PDE and
subsequent integration of the resulting initial value problem

* Corresponding author. Tel.: +351 22 5081695; fax: +351 22 5081449,  Of ordinary differ_ential equations with an appropriate integr_a-
E-mail address: mendes@fe.up.pt (A. Mendes). tor (method of lines: MOL). Usually, the integrator used is

0098-1354/$ — see front matter © 2005 Elsevier Ltd. All rights reserved.
doi:10.1016/j.compchemeng.2005.08.004



P. Cruz et al. / Computers and Chemical Engineering 30 (2005) 83-98

Nomenclature

A area (m)

b; Langmuir affinity constant (Pd)

c fluid phase molar concentration (mof)

Cy valve parameter

d diameter (m)

Dax effective axial dispersion coefficient fra~1)

Dy effective  homogeneous diffusion coefficient
(ms

k iteration or LDF coefficient,k; = 15DeM’l./r|§
(1/s)

Ky valve parameter

L length column (module) (m) or permeability coeft
ficient (molnT?s 1 Pal)

n number of stages

nc number of mixture components

N molar flow rate (mols?)

p pressure (Pa)

Pe Peclet numbePe = uesL/Dax

Pur product purity

q molar concentration in the adsorbed phase
(molkg™1)

gmax  isotherm  parameter, maximum capacity
(molkg™?)

r radius (m)

" universal gas constant (J malK —1)

Rec product recovery

t time variable (s)

T temperature (K)

u average (interstitial molar) velocity (nT8)

X dimensionless spatial coordinaies z/L

y molar fraction

z spatial coordinate (m)

Greek symbols

am ratio between diffusivity coefficientse;m =
DgM/Dref = ki/ kref

B pressure drop parameter

Sk membrane thickness (m)

&b bed void fraction (ratio between the free volume
and the total volume)

€p particle porosity

0 dimensionless time variable =t/
mixture viscosity (kgm!s1)

Os apparent particle density (kgTh)

Th bed time constant,, = L/uef

¢ error of the solution

) ratio between bed time constant and particle
diffusion time constant (LDF approximation)
® = Tokref

Subscripts

i component

in feed stream (inlet)

out outlet stream

pres pressurization

prod  production

purg  purge

ref reference

T total

Superscripts

F feed

H high

L low

P permeate or purge

R retentate

ST storage tank

\% vent

0 standard temperature and pressure conditigns
(STP)

* dimensionless variable

based on the backward differentiation formulas (BDBYyrfe,
Hindmarsh, Jackson, & Brown, 197MHindmarsh, 1974;
Petzold, 1983 known as Gear methodsgar, 197}, which is
suitable for the solution of stiff problems.

Different numerical methods are usually applied in space and
time discretization: orthogonal collocation, orthogonal colloca-
tion on finite elements, Galerkin finite elements and finite differ-
ences. These numerical methods are normally unbounded, which
means that unphysical oscillations can appear in the computed
solution. In the context of finite volume formulatioklarten,
Engquist, Osher, and Chakravarthy (1987posed the use of
ENO (essentially non-oscillatory) schemes and Shu and Osher
(Shu, 1997 Shu & Osher, 1988, 1983he WENO (weighted
ENO) schemes for the solution of partial differential equations
in the presence of steep moving fronts.

The aim of this work is present a numerical algorithm for the
solution of sorption and permeation problems that provide accu-
rate, local and global flux conservation, and stable numerical
results (without unphysical oscillations in the computed solu-
tion) even at shocks or discontinuities and to present a systematic
comparison of different discretization techniques.

The remaining of the paper is organized as follows: first the
mathematical model (mass balance equation, boundary condi-
tions, momentum equation) is presented. Following is presented
the implementation of the successive stages method and the finite
volume method, as well as a small discussion on the imple-
mentation of non-linear high-resolution schemes and WENO
schemes. The performance of different discretization techniques
is presented for three different separation processes: membrane
permeation, pressure swing adsorption and simulated moving
bed. In the case of membrane permeation we simulate a perme-
ation module for air separation using a polysulfone membrane
as described b@oker, Freeman, and Fleming (1998)the case
of pressure swing adsorption we study a two column pressure
swing adsorption unit for air separation as describe&éytos,
Portugal, Magalhaes, and Mendes (2004)the case of simu-
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lated moving bed we consider the glucose/fructose separation s&rm. When Eq(4) is dominated by advection @ — 0), it is
described by edo and Rodrigues (2004he paper ends with called a hyperbolic PDE.

a summary of the main conclusions. The application of conventional higher-order discretization
schemes to the advective (convective) term, in the case of
2. Model equations convection-dominated partial differential equation, may not be

adequate leading to the appearance of non-physical oscillations
The proposed theoretical model considers a separation syf~inlayson, 1992 The upwind differencing scheme (UDS) pro-
tem with a sorbent (adsorbent or absorbent) or a membrargosed byCourant, Isaacson, and Rees (1952he only uncon-
(Fig. 1). The following main assumptions are made: perfect gaslitionally stable scheme. This scheme, referred in the literature
behavior (where applicable), axially dispersed plug-flow, uni-using different names: successive stages method, mixed cells in
form bed/sorbent/membrane properties along the axial coordseries model or cascade of perfectly mixed tanks, is well known
nate and negligible radial gradients. According to these assumjn the context of separation processgébérton & Nicoud, 1995

tions, the model equations can be written as follows: Cheng & Hill, 1985 Coker et al., 1998 udemann-Hombourger,
Nicoud, & Bailly, 2000, however has only first-order accuracy,
Total mass balance : det _ a(”CT) ZN -0 (1)  aswill be seen in this work, and is not normally recommended
ot (Freitas, 199%
The implementation of ENO (essentially non-oscillatory)
ith component mass balance : schemes Harten et al., 1987and WENO (weighted ENO)
9. 5 o(ci/cT) 8(uci) schemes$hu, 1997 Shu & Osher, 1988, 1989or the solu-
hal i <Dax T —— T ) _ Y _N;, i=1nc tion of partial differential equations, can reduce significantly the
CU 9z dz appearance of non-physical oscillations, however, these are nor-

@) mally very computation time consuminglérten, 1996; Harten

wherect is the total molar concentration,the average (inter- €tal., 1987. Other approaches based on Harten’s wavelet based
stitial) molar velocityz the spatial coordinat®ax the effective ~ framework Harten, 199p were proposed. The wavelet based

axial dispersion coefficienty; the ith component molar flow ENO adaptative strategy may produce moderate CPU reduc-
rate,c; the ith component molar concentration in fluid phase, tions, since in smooth regions the numerical fluxes are evaluated

the time variable and nc the number of components in the mixwith inexpensive interpolations from surrounding grid points.

ture. However this reduction is rather limited, since for each time
Egs. (1) and (2) can be written in dimensionless form as Step the solution is still represented on the finest gridr{en,
follows: 1996.
. To overcome the occurrence of non-physical oscillations,
Total mass balance : der _ a(“ CT) ZN* (3) When using higher-order discretization schemes, an exten-
a0

sive amount of research in computational fluid dynamics
has been directed towards the development of accurate and

ith component mass balance : bounded non-linear convective schemes. In this work we use
high-resolution schemes (HRS), formulated in the context
k k k k k
gy _ 10 { G /CT)] _ du'ep) — N} (4) of the normalized variable and space formulation (NVSF)
06— Peix dx dx of Darwish and Moukalled (1994)These are, by definition,

wherec? is the dimensionless total molar concentratish=  bounded higher-order schemes and will be briefly described

c1/cref, 6 the dimensionless time variablest/zp, 7 the bed  below.

time constant,tp =Lluger, u~ the dimensionless molar aver- ~ We perform the discretization of Eq3) and (4) in two

age velocityu” = ulurer; x the dimensionless axial coordinate, stages. Firstly, we compute the space derivatives appearing in

x=zIL; N} the ith component dimensionless molar flow rate, the right-hand side using different schemes. Then, we integrate

Nf = N; Tb/Cref and Pe the Peclet number for mass transfer, explicitly the resulting initial value problem in order to obtain

pe uretL/Dax. the grid point values at the next time step. This time integration
Egs.(3) and (4) have initial valueszz(r, x) = ¢%(0, x) and is performed with the package LSODRétzold, 1988 that is

ci(t, x) = ¢¥(0, x). The term appearing on the left-hand side of briefly described below.
Eq.(4)is called the inertia term, while on the right-hand side one ~ For convenience, in the following sections the superscript “*”
can identify a convective (advective), a diffusive and a sourc&vill be omitted from the dimensionless variables.

2.1. Boundary conditions

Ci=Ciin C=cC;
W=ty u’= u - . .
VVV VYV VYV VY VYV Eq.(fl), theith compo_nentmass palance equation, |sasecon<_j—
N = (o) order differential equation and so it needs two boundary condi-

tions. In separation processes, these boundary conditions are
Fig. 1. Sketch of the model proposed for the solution of separation problemsnormaiiy obtained from a balance in the Vicinity 0E0 and
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x=1. (Bird, Stewart, & Lightfoot, 1960
1 d(c; i — Ci x—0—
— O : - (CI/CT) — Mx:() Cl CI,X—O (5) _api — ﬂu (14)
Pe 0x cT 0x
1 9(ci/cT) Ciym1t — Ci In the case of a permeation moduliss 8u/r?, wherep is the
x=1: Pe  ox | M= <CT> 6)  mixture viscosity, given by Wilke's formuleB(rd et al., 1960,

andr the tube (or equivalent tube) radius. Et@) results in the

These type of boundary conditions (Cauchy boundary condiwell-known Hagen—Poiseuille equation. In the case of packed
tions) are a weighted average of Dirichlet boundary conditiongolumns,s should be:
(which specify the value of the function) and Neumann bound- )
ary conditions (which specify the derivative of the function) and 5 _ 150(1— en) (15)
are known in the Chemical Engineering field as Danckwerts sgdg
boundary conditionsifanckwerts, 19583

When the velocity,=o or u,=1) is equal to zero, Eq$5) and
(6) are reduced to:

1 oeifer) _
Pe  0x

Eq. (3), the total mass balance equation, is a first-order differ- Th ive st method (or mixed cells in series model
ential equation. Depending on the assumptions made, different € successive stages method (0 €c cells In series mode

boundary conditions can be applied. Following we present the" cascade of perfe_ctly mixed tar_‘kﬁ'@- 9, is a widely used
most common, that should be useful for most of the problems method for the solution of separation processes, see, for example

(Coker, Allen, Freeman, & Fleming, 199@oker et al., 1998
in the case of membrane permeati@meng and Hill (1985)n

Z'Iil' d¥elf Céty p rf:ﬁ le mfdll“ted 5y Slt ems ificat . the case of pressure swing adsorption @mérton and Nicoud
n diluted systems, for example purifications using pressur%1995)andLudemann-Hombourger et al. (200@)the case of

whered), is the particle diameter ang the bed void fraction (bed
porosity). Eq(14)results in the also well-known Blake—Kozeny
equation.

0 ) 3. Successive stages method

fv;/n?%nadsot:pltlonn or smzla;edh mcl)(\jnggt t;)ed tellshgofgles, tht imulated moving bed.
vola it asi ﬁ? a cnebequanoid Sr %u not n? solved, because thepq equivalent total mass balance equation using the succes-
elocily profiie can be considered constant: sive stages method is given by the following equation:

u(¥x) = uin ®

nc
k .k k=1 k=1 k
. o =—n(u"cr—u ¢ — NY, k=L1n 16
whereu;, is the molar average velocity in the feed stream. a6 Wer T ; ! (16)
2.1.2. Velocity profile without pressure drop (isothermal) Whe,ren Izthe number of stages. Tfth component mass balance
When the pressure drop and temperature variations can e 9'ven by
considered negligible, two of the following three boundary con-ac{,c

ditions must be imposed: 0 = —n(u¥ef —u* Y — Nf 17
u(x = 0) = ujp (9)  And the pressure drop equation is given by:
k+1
u(x = 1) = Uout (10) uk - <p_|_+ _ p$> (18)
ocT B
—— = constant (12)
00 nc

. L k _ k ok _ ok Tk
whereuoy is the molar average velocity in the outlet stream. Wherect = ZC,' sop = pr/T.
i=1

2.1.3. Velocity profile with pressure drop (non-isothermal)
When the pressure drop and temperature variations cannot
considered negligible, one mustimpose one boundary condition In diluted systems, the total mass balance equation should not

inx=0and other inr=1, as it follows: be solved, since the velocity profile can be considered constant:

gél . Velocity profile in diluted systems

u(x =0)=ujn or c1(x=0)=cTin (12) uk = uin, fork=1L1n (19)
u(x =1)=uou or c1(x=1)=cT0ut (13)
u’ u' \l—cxéL| uw? uH\IHBL| u* u \[—CﬁL| u
2.2. Pressure drop & ol /LYlTI(’ (-H/I_‘{TI e (.ZHW -
1 2 ' ; ’ ' i

o
The pressure drop along a packed column or a hollow fiber ‘

permeation module can be described by the following equation Fig. 2. Successive stages method applied to a separation process.
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3.2. Velocity profile without pressure drop (isothermal)

Boundary conditionsict/30 = c?r andug = uj. The velocity
profile is calculated by the following equation:

1
k k-1 § k
= I — N ) k = 17
u u or (CT + ) n

i=1

(20)

Boundary conditionsdct /00 = c$ andu” = ugyt. The velocity
profile is calculated by the following equations:

0 k k—1 k

w =0 u=u""——|F+) N
=]

k=1,...,n, Yy = ugyt — u", uk = uk +7,

k=1 ...,n (21)

Boundary conditionsi® = uj, andu™ = uoyt. The velocity profile
is calculated by the following equations:

n nc
& = —erluou—un) + 305 (NEAL)

k=1i=1

_<CT+ZN/‘), k=1n-1 (23)

ner

(22)

uk = k-1

3.3. Velocity profile with pressure drop (non-isothermal)

The velocity profile is calculated by the following equation:

1k
uk = —n br_—P1 (24)
B
Boundary conditionsp$ = pr.in andp? = pr out
2n
Uin = —F(P% - PT,in) (25)
2n
Uout = —?(PT,out - P’11') (26)
Boundary conditionsig = uin andu™ = uoyt:
PT,in = %Min + p% (27)
PT,out = P!|l' - ﬁuout (28)
’ 2n

The pressure profile is calculated by the integration of the folel al. (1952),cf = cf, i=1, .

lowing equation:

) k
% = —n (ukCZ{r

yh=1 k= 1) ZNk’ k=1n

4. Finite volume method

(29)

0 1 2 1 i 1 "
iy i, u, Uy s . u;
0 ! 2 = I = p
G Lﬂ7—| G L&;;—l GF Cir L‘{7—| Gr i ,I—\l/—‘ Cir
1 2 & .
N N, N N

Fig. 3. Finite volume method applied to a separation process.

the reason why it has been successfully used for heat transfer
and mass flow problems.

Fig. 3 presents the finite volume discretization method in a
schematic formug is the velocity in the facé andcf; the
concentration of species in the facke

The equivalent total mass balance equation using the finite
volume method is given by the following equation:

~k k .k k 1 k 1 nc
ey UECTE— ZN

o Axk
whereAx* is the volume irk stage. And the partial mass balance
is given by:

k=1n

(30)

k=17 k=1, k-1
a1k (/) — r AT Y,

3  Pe Axk
k k—1 k-1

”FczF_”F CiF Sk
M (31)

¢k is the cell average concentration that is a function‘ads it
follows (Leonard, 199%

2
~k k (Axk) (Cf'{)”‘i‘ (Ax ) ( k)('V) (32)

GGty 1920
(c¥/ck) cisthe derivative of} /cX) inthe facek and is a function

of the neighboring cells. Using a second-order approximation
(central difference scheme—CDS2) we obtain:

(cf /ch)
(1/2)(Ax T + AxK)

( k+1/Ck+l

(cf-‘/c-’f—)/,: (33)
F is the concentration of speci&is the facek and is a function
of the neighboring cells, as follows:

fe=fle e e *?) and clch_chF (34)

i=1

Several methods have been proposed in the literature for the cal-
culation ofc ‘£ (concentration of specigsin the facek), such

as the first- order upwind differencing scheme (UDS) of Courant

, nc, the second-order linear
upwind scheme (LUDS) oShyy (1985) cfp = 3k — 3471,

i=1, ..., nc, or the third-order QUICK scheme aEonard
(2979) c{f,; = %(cff+l + by — %(chrl + 2ck + cffl), i=1,...,

nc, which are all upwind biased. Central schemes are often used,
such as the second-order central (CDS8),= 3(ci !+ cf),

i=1, ..., nc, or the fourth-order central differences (CDS4).
All these methods, with the exception of the first-order UDS,

In finite volume method the values of the conserved variablesuffer from lack of boundedness and, for highly convective
(for example: molar concentration) are averaged across the vdilows, the occurrence of unphysical oscillations is usual. Two
ume and the conservation principle is always assured. This different bounded approaches are nowadays commonly used:
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high-resolution schemes (HRS) and weighted essentially norBoundary conditionsu,? = uin andu}t = uout:
oscillatory (WENO) schemes. These are, by definition, bounded

higher-order schemes and will be briefly described below.

4.1. Velocity profile in diluted systems

P
In diluted systems, the total mass balance equation should

BAxT

PT,in = Tuin + P%,F (44)
Ax"?
T.out = P?,F - ﬂTuout (45)

not be solved, because the velocity profile can be considerefhe equations presented for the boundadd3and(45)are only

constant:
ud = u® (35)

4.2. Velocity profile without pressure drop (isothermal)

Boundary conditionsict /96 = c@ anduE = uijn. The veloc-
ity profile is calculated by the following equation:

Lo A 1 36
UE = U v cT—i-ZNi , k=1n (36)
i=1

Boundary conditionsicy /00 = c$ andu” = ugyt. The velocity
profile is calculated by the following equations:

Axk nc
£ ot O (g 3,
r i=1

k=1 ...,n,
k=1, ...,n

n k k
Y = Uout — UF, Ugp =ug+y,

(37)

Boundary conditionsu,? = uin andug = uout. The velocity pro-
file is calculated by the following equations:

n

nc
C?- = ZZ(NZ{AXI{) — ct(uout — uin)

k=1i=1

Axk nc
ug=ug = — [ G+Y N, k=1ln-1 (39)

(38)

4.3. Velocity profile with pressure drop (non-isothermal)

first-order accurate. That should not be a problem in common
separation problems. However for processes with high pressure
drop these equations should be replaced by at least a second-
order accurate approximation.

5. HRS and WENO schemes

As mentioned before, the application of conventional higher-
order discretization schemes to the advective term (convection
term) of hyperbolic or parabolic equations dominated by con-
vection is not adequate, due to the occurrence of non-physical
oscillations.

In order to overcome this issue, an extensive amount of
research has been directed towards the development of accurate
and bounded non-linear convective schemes. Several discretiza-
tion schemes were proposed on the total variation-diminishing
framework (TVD) Harten, 1983; Shyy, 198and more recently
on the normalized variable formulation (NVH)gonard, 198y
and its extension, the normalized variable and space formulation
(NVSF) of Darwish and Moukalled (1994)

Considering a general grid, as illustratedrig. 4. The label-
ing of the nodes depends on the local veloaity, calculated
at face F. For a given face F, the U and D nodes refer to the
upstream and downstream points, relative to node P, which is
itself upstream to the face F under consideration, as shown in
Fig. 4.

According to the NVSF, the face values are interpolated as
(Darwish and Moukalled, 1994

yF = yu + Yr(yp — yu) (46)

wherey is the convected variable (for exampig.

Using a second-order approximation (CDS2), the pressure The normalized face valueg;is calculated using an appro-

drop equation is given by:

1k
Sk 2 pr -t (40)
P B AXKL 4+ Axk
where
nc pk
k=>"c, &= T% (41)
i=1
Boundary conditionspd ¢ = pr.in andp £ = pr.out
2 P% - P$ F
2 PTE—Pr
UE = Uout = —ET (43)

priate non-linear limiter. As a example we present the SMART
(Gaskell & Lau, 1988 limiter (third-order convergence in
smooth regions):

5¢ = max {5’ min (50:(1— 355P+255F)5} Xr(l— Xg)
F= P, = = P, = =
¥p(1— Xp) ¥p(1— Xp)
N Xr(XF - XP)’ 1)] (47)
1—Xp
Up =20 —>» U P D
D P U €« up<0
—0 o o—r o
k-2 k-1 ko kel k+2
F

Fig. 4. Definition of local variables.
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and the MINMOD limiter Harten, 198B(second-order conver- module. An extensive revision is presenteddoyvali, Vemury,

gence in smooth regions): Krovvidi, and Khan (1992)The analytical solution of mass and

fe. 1-ir e — Fp momentum balance equations can only be obtained under some
YE = max [yp, min (Nyp, —yp+ - )} (48)  assumptionsWeller and Steiner (195Qresent an analytical

xpt 1-—3p 1-%p solution, based on the following assumptions: plug-flow pattern,

where the normalized variableg, ¥p and ¢ are calculated ~constant and composition independent permeability and negli-

using: gible pressure drop ar@imith, Hall, Freeman, and Rautenbach,
1996assuming perfectly mixed pattern in the permeate side.
o= P g PT  _FTWU The numerical solution can be obtained using series approx-
YD — W XD — U XD — XU (49) imations and numerical methods applied to the solution of ordi-

nary differential equationKovvali et al. (1992)and Boucif,

More details on this issue, and other high-resolution scheme&/&jumdar, and Sirkar (1984jresent models for binary mix-
can be found in the works dbarwish and Moukalled (1994) tures andPettersen and Lien (1994phdChang, Min, Oh, and

andAlves, Oliveira, and Pinho (2003) Moon (1998)or multicomponent mixtures using series approx-
According to the third-order WENO scheme, the face fluxegmations.Kovvali et al. (1992) Pan (1983gndChen, Li, and
are interpolated asshu, 1997 Shu & Osher, 1988, 1989 Teo (1995)have solved the model equations using the shoot-
o L ing method, which consists in solving the boundary conditions
YF = WoYF + W1y (50)  problem as an initial condition problem, with an iteration strat-

egy. This approach is not very efficient and the convergence is

i 0_1 1_3,._1
with y¢ = 5(yp + yp) (CDS2),yf = 3yp — uu (LUDS) and not always assured.

wi defined by: Kaldis, Kapantaidakis, Papadopoulos, and Sakellaropoulos
oj d;j . (1998)andTessendorf, Gani, and Michelsen, 19&®e used the
w; = , aj=—"—, j=0,1 (51) : X .
ag + ay (e + ,3]-)2 orthogonal collocation method for solving the model equations.

o ) ) This strategy conduces to a system of non-linear equations which
wheres >0is |ntrod6u.ced to avmdthg denominator became Zeroconvergence is very dependent on the estimated composition
We takes =1 x _10‘ in all our numerical tests. The smoothness profile.Coker etal. (1999, 199@ndThundyil and Koros (1997)
measurement is defined by: have solved the model equations using the successive stages
(52) method (upwind differencing scheme). The system of equations

Bo= (o — yp)°, B1= (vp — yu)? SN AR
obtained in the case of constant permeability is linear, and so

anddp = % andd; = % it can be solved very efficiently. However, a higher number of
mesh points is necessary, i.e. 100—-1000, Ce&ér et al., 1998
6. Temporal integration for obtaining an accurate solution, which conduces to a higher

memory consumption, namely in multicomponent systems.

The time integration of the resulting system of ordinary dif- The numerical solution of permeation models has three
ferential equations (ODEs initial value problem) can be accomimportant issues that should be discussed: the convergence of
plished using solver LSODARetzold, 1988 Thisroutine solves the non-linear system of equations that results from the dis-
initial boundary problems for stiff or non-stiff systems of first- cretization of the ordinary differential equations, the treatment
order ODEs. For non-stiff systems, it makes use of the Adamef boundary conditions and the accuracy of the discretization
method with variable order (up to 12th order) and step size, whilgcheme.
for stiff systems it uses the Gear (or BDF) method with variable The discretization of the model equations using high order
order (up to 5th order) and step size. In our test cases the errechemes conduces to a system of non-linear algebraic equa-
in time integration was always set small enough to ensure thaions. The solution of this system using, for example, the
the numerical errors are mainly due to inaccuracies in spatiaNewton—Raphson method converges to the exact solution only

discretization. if a good initial guess is used. The solution of the problem in
non-steady-state, as proposed, eliminates this problem.

7. Application examples The treatment of boundary conditions is also an important
issue. The main problem occurs when solving the ordinary dif-

7.1. Steady-state membrane permeation processes ferential equation for the permeate side with no purge, using

finite difference methods. In this case the concentratiorn=

The use of membrane technology in gas separation has grownocurrent pattern) ar= 1 (countercurrent pattern) is not known,
significantly in the last decades due to the development of highlgnd should be estimated based on the retentate/permeate condi-
selective materials and the lower power consumptions involvetions. This problem does not occur when using the successive
(Mendes et al., 2003The hollow-fibber membrane separation stages method and the finite volume method.
is based on the different permeability coefficients of each com- The discretization scheme used is the final important issue
ponentthrough a selective barrier, porous or non-porous (densehat should be pointed out. The successive stages method is a

Several models have been developed along the last yeafisst-order accurate method and therefore itis not recommended,
for the simulation and optimization of a membrane permeatioras will be seen in the following illustration examples.
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x Table 1
PLIPA R =R R ) Permeance and feed composition for air separation simulatdoisef et al.,
i g i i.out etentate
u® = “.':. oy ut=u side 1998
VAR N ARAEE \l/ V \l/ \l/ Component Feed mole fraction Permeability coefficient (GPU)
Ne=f0) Membrane N 0.7841 3.57
AR A AR A AN AL O 0.2084 20
¢ =ciy S o pormente CO, 0.0003 60
W= Wil side H20 0.0072 1000

3 1 GPU =3.346¢< 10~ 13kmol/n? s Pa.

b The water composition corresponds to saturation a4and 10 atm total
Fig. 5. Sketch of the model proposed for the solution of membrane permeatioRressure.

problems.

X

7.1.3. Results and discussion
7.1.1. Mass exchange The simulations results described in this section are for coun-
The mass exchanged between the retentate and permeatgcurrent contacting. We present as test case the air separation
considering that the resistance to the mass transfer is oniy a polysulfone membrane. The permeances of the membrane
imposed by the selective barrier, and that the membrane dogs air gas components are presentedable 1 The membrane
not have any defect and permeability coefficient is constant, capermeances are selected to be similar to those which might be

be written as follows: observed with a polysulfone membrane with an effective sep-
A R_ P arating layer thickness of approximately Q. (Coker et al.,
Ny= T PP (53)  1998.
As =

Fig. 6 presents the simulation results for countercurrent con-
whereL; is the species permeability coefficient§r the mem-  tacting without recycle. The effect of mesh refinement in the
brane thicknessiT mass exchange perimeter atgthe flow  nitrogen purity is shown as a function of overall residue recovery
section area. The subscripts R and P mean retentate and perme(@t@ge cut)Fig. 6a concerns the results obtained using QUICK

side, respectively.

100
7.1.2. Boundary conditions
Following we present the boundary conditions for different
flow patterns and Pe =0 (Fig. 5): s 77
z
e Cocurrent flow without recycle R
o Retentate g
x=0: uR:ui'ﬁ,yiR:yﬁn; %ﬂ
x=1: p'FIg:p'Flg,out < 81
¢ Permeate
. P ) ) P P
x=0: u =0 x=1:  pT=DpTou 80 . : . .
e Cocurrent flow with recycle/purge 0 20 40 60 80 100
¢ Retentate (a) Overall residue recovery (%)

. R R R R .
x=0: u”=up, Yi = Vijin»

. R R
x=1: pr=rpToun
o Permeate
. P P P P .
x=0: u =up, = Yiin»

1. P_ P
x=1: PT = PT,out

Nitrogen purity (%)

e Countercurrent flow without recycle
o Retentate

x=0: MRZI/Ii?], leZysm, 80 T T T T
0 20 40 60 80 100
x=1: p-|R = p-|R out (b) Overall residue recovery (%)
o Permeate Fig. 6. Effect of mesh refinement on nitrogen purity in retentafe/ p? = 5):
=1 up 0: c=0" pp pp (--)n=1, 2, 4, 8, (—) reference solution. (a) QUICK scheme and (b) UDS
=+ =Y =Y. T = PT,out

scheme (successive stages method).
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| = the case of non-smooth problems (high convective problems)
- - QUICK scheme conduces to the appearance of non-physical
oscillations in the solution, and so the SMART scheme is
recommended.
As a conclusion on this topic, we should remark two aspects.
A correct implementation of the finite volume method as it

0.1 7

< 0.01 QUICK . . . .
. was presented, using a third-order accurate approximation (as
¢ =068 QUICK scheme), conduces to accurate solutions with a modest
0.001 4 number of mesh points (discretization volumes). The local and
global flux conservation, that is intrinsic to the finite volume
method, is a key issue to the success of the method.
0.0001 . ————r r r ——rT
1 10 100 7.2. Cyclic adsorption processes
n
Fig. 7. Effect of mesh refinement on nitrogen purity in retentafey pf = 5): Cyclic adsorption processes are based on the selective reten-
QUICK scheme and UDS scheme (successive stages method). tion (based on adsorption equilibrium selectivity or diffusion

selectivity) of one or more components in a gas mixture,

) o ) with the adsorbent regeneration being performed by total or
dls_cret|zat|on schgme arkdg. 6o concerns the results obtained partial pressure decrease (pressure swing adsorption—PSA,
using the successive stages methodker et al., 1998 vacuum swing adsorption—VSA or vacuum pressure swing

With the proposed method it is possible to obtain an acceptyysorption—VPSA) or by temperature increase (temperature
able solution with only eight discretization volumesforallvaluesswing adsorption—TSA). These processes are intrinsically
of overall residue recovery. The successive stages method COBynamic, operating in a periodic fashion with a fixed (or vari-
verges slowly to the reference solutipn, name_ly for high valuesdbb) period.
of stage cutCoker et al. (1998)nentions that in some cases,  The models of cyclic adsorption processes can only be solved
when the stage cutis extremely high (>90%), atleast 1000 staggg,aiytically in the case of purifications, using the method of
are required to obtain the problem solution. _ characteristics, under the following ideal conditiofséebel

Fig. 7 presents the error of the solutiap, as a function of g yjj| 1985: Shendalm & Mitchell, 197p isothermal system,
the.number of stages/discretization volumes. In this figiie,  jnstantaneous equilibrium between the gaseous phase and the
defined as follows: adsorbed phase, negligible pressure drop, linear isotherm and

|Pur — Pur| frozen concentration profile during pressurization and depres-
(54)  surization stages. In the case of separations, the assumptions

mentioned before are not usually valid, and so the system of
where Pug is the reference value of purity in the retentate, partial differential equations must be solved numerically.
Punne stagdhe purity in the retentate obtained using one stage, Usually, in cyclic adsorption processes simulation, one of the
and Pur the purity obtained usingstages (discretization vol- following strategies is applied to solve the model equations. The
umes). FronFig. 7 it is possible to see that UDS (successivefirst one consists in the simultaneous space and time discretiza-
stages method) converges to the reference solution with onlyon and posterior resolution of the resulting non-linear algebraic
first-order accuracy and the QUICK scheme converges approxsystem of equations, for example: double collocat®aghavan
imately with third-order accuracy. For obtaining a solution with & Ruthven, 198%and space and time finite differenc&ef &
an accuracy equivalent to eight volumes using the QUICKYang, 1985 Yang & Lee, 1998 The other strategy consists in
scheme it is necessary to use 1000 successive stages. And ftbe spatial discretization and subsequent integration of the result-
obtaining a solution with an accuracy equivalent to 16 volumesng initial value system of ordinary differential equations (ODE)
using QUICK scheme it is necessary to use 7800 successiweith an appropriate integratdfipnlayson, 1992 method of lines
stages. (MOL). Normally the integrator used is based on the BDF (back-

From this simple example and analysis, it can be seen that theard differentiation formulas), known as Gear formul&sér,
successive stages method should not be used for high stage-di®71), that are suitable for the solution of stiff probleniBs/(ne
values and/or multicomponent mixtures, due to the high numbest al., 1977; Hindmarsh, 1974; Petzold, 1988 Runge—Kutta
of equations that need to be solved. Fehlberg method (RKF45+¢ehlberg, 196Bthat is unsuitable

We have tested some other high-resolution schemes, namdigr the solution of stiff problems but commonly used in cyclic
the SMART scheme, MINMOD scheme and the third-orderadsorption processes simulation.

WENO scheme. The results obtained using SMART scheme Different numerical methods have been applied to the solu-
are identical to the ones obtained using QUICK scheme. Thiton of cyclic adsorption processes using the method of lines:
seems to be obvious since the SMART scheme uses QUICKuccessive stages methodhgeng & Hill, 1985, orthogonal
scheme in smooth regions (note that the problem presented @®llocation Arvind, Farooq, & Ruthven, 20Q2Raghavan,
always smooth), the MINMOD and third-order WENO present,Hassan, & Ruthven, 1985finite differences Ko & Moon,
with mesh refinement, only a second-order convergence. 18000, orthogonal collocation on finite element®d Silva,

¢

|PUR — PUfne stagé
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Silva, & Rodrigues, 1999 Galerkin finite elementsTéague & cF
Edgar, 1999 The use of high-resolution schemes has been men- o
tioned in the work ofCruz et al. (2003) +
In a kinetic based separation, the method used in spatial
discretization is not fundamental in order to obtain an accu- Cy
rate solution, since the problem does not normally involve a
sharp moving front. In this case, the orthogonal collocation and ST
Galerkin methods are usually better than the others, as they have Cl c2
a higher convergence. However, in an equilibrium based separa- $
tion, which is the most common separation type, the appropriate Product
choice of discretization method is fundamental in order to obtain
an accurate solution. In this case, the problem involves a sharp 5
- ﬁ—ag% 1

moving front, which is steeper as the selectivity increases and/or

the dispersive effects (mass transfer resistance, for example) : \
decrease. The use of bounded methods, as the successive stages '™ ¢! VI 4& cr V2 G Ven
approximation, is important in order to obtain stable solutions

without oscillations in the computation domain. The appearance f Feed

of oscillations in cyclic adsorption process simulation could con-
duce to a divergence in the integrator as well as mathematical
impossibility when calculating the adsorption equilibrium con-

Fig. 8. Sketch of a small pressure swing adsorption unit.

centration. qi,s=fpr, pi). In dimensionless form:
The use of high-resolution schemes conduces always to stableW
solutions with a high convergence to the reference solution, agi = oo mlat. — T 57
; : . = gaim(gis — q7) (57)
will be seen in the following examples. do
whereyp = tpkret anda; m = DfM/Dref = k;/ kref. The subscript
7.2.1. Mass exchange rate “ref” means reference condition.

In cyclic adsorption processes the mass exchange rate
between the particle and its surroundings is normally given by > 3 goundary conditions

the following expression: Cyclic adsorption processes are intrinsically dynamic, oper-
1— ey 5% o7 ating in a periodic fashion, and so the boundary conditions
N; = |:gpl + psl:| (55)  change with time. In this work we propose the study of a small
€b o o pressure swing adsorption unit as describedSlaytos et al.
(2004)

wheregy is the bed void fraction (ratio between the free volume
and the total volume)s, the particle porosityg; the average
molar concentration in the adsorbed phaseatite molar aver-
age concentration in the fluid phase.

Fig. 8 presents a sketch of this unit.

Since there are no valves to control the duration of pressur-
ization, this step depends on the difference between the pressure
inside the storage tank (ST Kig. 8 and inside the adsorption
column. Due to the use of check valves, production will start
7.2.2. Intra-particle mass transfer when the pressure inside the columns is higher than inside the

Different approximations can be considered for describproduct tank.
ing the intra—particle mass transfer. In this work we use the The unit can operate at two different stages: stage 1 where
linear driving force (LDF) approximationQlueckauf, 1955  pressurization and production take place, and stage 2 where the
assuming instantaneous equilibrium betw_een the inter-particlgolumn is depressurized and purg@dble 2presents the posi-
gas phase and the intra-particle gas phasg/00 = doc;'/36).  tion of the three-way valves in the base of the columns for each
This model can be derived from the intra-particle mass balancgtage.
equation, which is a partial differential equation, Considering When column 1 is pressurizing/producing and column 2 is
parabolic profile inside the particlei@w, Wang, Greenkorn, &  depressurizing/ purging the boundary conditions in the dimen-
Chao, 197 sionless form are (for the sake of simplicity the superscript “*”
was omitted):

dcz _ oc; ac;
— =ki(gis—q;) and — = — 56
a0 I(QI,S qi) %0 %0 (56)
Table 2

wherek; is the LDF coefficienty; = 15DF), / rg, Dy, ; the effec-  Flow direction at each valve for each step
tive homogeneous diffusion coefficient, the particle radius, Stage 1 Stage 2
gis the molar concentration in the particle surface (adsorbed

: i i o : 1-2 23
phase) that is related with the molar concentration in the interg,, 23 152

particle gas phase through the adsorption equilibrium isotherm:
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e Column1 Table 3
1 ay; Adsorption equilibrium isotherm parameteBafitos et al., 2004
. L — . o —_— .r
x=0: Ea = Mln(yz )’:,ln) (58) N, O, Ar
CF gmax (Mol/kg) 3.0704 3.0704 3.0704
u= = f(pY. p1. T. M) (59) b (x1C°Pal) 0.1015 0.0369 0.0340
DT AHI% (K) 1767 2501 1791
ayi
O 07 pl > p2
x=1: o T and
1 9 1_ 2
ooy u(yi = Yilx=1,coumn2. PT < Pf P2 — p?
e ox (60) 1.179 “7MdT, pd > 0.53py
f(pU’ pda]:M): 1 Pd
P ST, ST
w=SCp(pt, p2, 7 My 4 SBPE L 2 Yawvet P = 0.53py
pd
Pt €bPT (69)
P
U= _C%f(p% p%’ T, M), p% < p% (61) whereKk\, is the valve parametey, andpq are the dimension-
14 less upstream and downstream pressures, respecfiviily,

Eq.(59) can be replaced by a correlation that relates the flow dimensionless temperature avidhe molecular _vve‘i‘gtlt ofthe
rate given by a compressor with the pressure inside the adsorp- 92 passing through the orifice. The superscript “0” stands for

tion column.
e Column?2

9y,
0x

_ O o 63
U= pzf(PT,PT,T,M) (63)
2

- =0, Pt = p

*7 = “(J’i - yi|x=1,c0|umn ]), 17% < P']['
(64)

&1 2 1. .2
u= —p‘z’ fp1. P7. T M), pt > pT,
T

ST, ST

standard temperature and pressure conditions (STP).

7.2.4. Results and discussion

The simulations were performed for the oxygen production
from air (nitrogen, 78%; oxygen, 21%; argon, 1%) using the 13X
zeolite type Oxysiv 5 from UOP. The cycles optimized were the
ones of the oxygen concentrator and of the small PSA unit pre-
sented irSantos et al. (2004The single-component adsorption
equilibrium isotherms parameters (Langmuir isotherm) are pre-
sented inTable 3

Since oxygen and argon capacities are very similar, feed was
considered to be 78% of nitrogen and 22% of a pseudo-binary
mixture of oxygen and argon.

The operating conditions, the physical characteristics and
valve coefficients considered in the simulations are given in
Table 4

The feed flow rate given by the compressorSaiftos et al.,

cP u>'p .
u=—3 f(pF. pr. TM)+ "0, pt < pf (65)  2004:

b bPT 1073p0T 3 5
where the dimensionless average molar velocity of the streain /T = WW[O-0731@TPref) — 0.288(p1 pref)
entering the storage tank>T, is given by: retre

— 6.517p7 pref + 91.370] (70)

upTpST = T f(pr, PR, T. M) (66)

In Table 5we present the effect of mesh refinement in the simula-

The molar velocity across a valve orifice was described bytion results (oxygen purity and recovery) for different production

(Chou & Huang, 1994Teague & Edgar, 1999

whereCy is the valve parameter given by:

Tret PO

Cy=2035x102— " ~
Y SbAuref«/ Dref 70 v

(68)

flow rates using QUICK scheme. As we can see, for low prod-
uct flow rates, oxygen purity is higher than 1, simultaneously the
concentration profile inside the column present some unphysi-
cal oscillations, which do not disappear with mesh refinement.
For higher product flow rates the concentration profile inside the
column tends to be smoother and unphysical oscillations tend to
disappear. These results give us an indication of the number of

Table 4

Operating conditions, physical characteristics and valve coefficients of the PS/&Santoé et al., 200

T(°C) Y (MPa) P (MPa) presiprod(S) K KT Ky L (cm) D (cm) LT (cm)
37 0.3 0.1 9.0 0.0394 0.15 0.55 29.5 8.0 12.5
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Table 5 100 25
Effect of mesh refinement in simulation results (oxygen purity and recovery) for
different production flow rates using QUICK scheme 95+
4 20
n 1dmgy/min 3dngy/min 5 dimpy,/min 90
Rec Pur Rec Pur Rec Pur 85 1 115
S
4 0.070 1.213 0.179 1.045 0.247 0.844 £ 80- E
8 0.060 1.041 0.178 1.039 0.245 0.837 110
16 0.057  0.995 0172  1.006 0.228  0.779 739
32 0.057 1.000 0.171 1.001 0.222 0.757 704
64 0.057 1.000 0.171 1.000 0.222 0.756 + 5
128 0.057 1.000 0.171 1.000 0.222 0.756 65
60 r . . 0
0 2 Q ([4 feni) 6 8
. . . . 4 min
volumes that are required to accurately simulate this separation prod THPIN
unit. A number of 32 volumes are apparently acceptable. Fig. 10. Purity and recovery as a function of production flow rdf§:$MART

In Fig. 9 the error of the solutiong, is presented as a scheme, () Santos et al. (2004)alues and®) experimental.
function of the number of discretization volumes for two dif-

ferent schemes: QUICK and SMART for a product flow rate of 5a the sameYpresfprod CF, CST, CP and €Y. In Table 6we

1dngry/min. In this figure is defined as it follows: present the optimization results for a temperature ofdor

ref details se&antos et al. (20044 ¢ value of 110 was considered
|Xi — X;7| (71)  and arestriction of oxygen + argon purity of 0.99 was imposed
in the optimization. The time cycle is the variable that is more
affected with mesh refinement. The maximum recovery obtained
increases with mesh refinement as expected.
. As a conclusion on this topic, we should remark that it should
_ : CS4, the oxygen purity (or recovery) pe ayoid the use of unbounded schemes in the solution of cyclic
using four discretization volumes and QUICK scheme. As weygsorption processes, namely when the problem involves sharp
can see, the error in the simulation results using QUICK schemg,qying fronts, since with this schemes the error in the problem
tends, with mesh refinement, to an asymptotic error which is nod o ,tion decreases with mesh refinement very slowly (in the

obvious from the an_alysis dlable 2 Note that this is due to the  55e of QUICK scheme the third-order accuracy is completely
unbounded properties of QUICK scheme. lost).

In Fig. 10we present the comparison between experimental
results, simulation results using SMART scheme, and the sim73 Simulated 1o bed
ulation results bySantos et al. (2004We can observe a good " wnuLated moving be
agreement between experimental and simulation results. . .

Our strategy was also used to analyse the influence of the Slmulated_ moving bed (SMB) technolo@c_(ughton_, 196).1

: o . , I$ an emerging technology for the separation of life science
discretization scheme and mesh refinement in the results 9 . )
. S L . - . products, such as pharmaceuticals, proteins, enzymes, food

numerical optimization of such a unit using six decision vari-

ablesZ/LST (assuming that the area of storage tank and column%?d fme_ chemlcals, Wher.e standard thermal unit operations
ike distillation are not suitable. It provides a powerful tool

for the separation of multicomponent mixtures in which the
components have different adsorption affinities, especially

¢' = —_——
! |XIQU|CK _ Xl(efl

WhereX{ef is the reference oxygen purity (or recovery) in the
outlet streamX; the oxygen purity (or recovery) usingdis-
cretization vqumeinQU'CK

when they show separation factors near one and when high
ol resolutions, yields and purities are required.
’ Originally developed as an industrial processBrpughton
(1984) for the large-scale separation of C8 aromatic hydro-
0.014
-
N\g---&---@ QUICK
0.001 Table 6
Effect of mesh refinement in optimization results using SMART scheme
0.0001 S \6 = 64n” n ULST  Opespros C5 CST P Y Rec
SMART E 4 2.06 0.73 155 734 90 229  0.252
0.00001 — T ‘ — T 8 2.09 0.90 155 73.4 8.9 229 0.288
| 10 100 1000 16 2.10 1.06 155 734 89 229  0.317
n 32 2.02 1.10 155 734 88 229  0.324
64 2.10 111 155 734 89 229  0.324
Fig. 9. Effect of mesh refinement on oxygen purity and recovery (cyclic steady128 2.10 1.11 155 73.4 8.9 229 0.324

state): (J) purity and (O) recovery, using QUICK and SMART schemes.
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carbons and sugars, SMB is how considered as the process of Desorbent Section I Extract
choice for the separation of optical isomers. D m AD

In the case of petrochemicals (C8 aromatics) and food (C6
sugars) industries the separation factors are very large, the col-
umn efficiency does not need to be high and there are solid
phases available on which the adsorption equilibrium isotherms
are almostlinear within the entire useful range of concentrations.
The situation is, however, quite different for the enantiomeric
separations considered in the pharmaceutical industry. In most :
cases, the separation factor is low and the isotherms are not usu- ¢ leed
ally linear.

The type of isotherm influences substantially the structure
of the resulting mathematical problem. Processes with lin- S Frootfefal” - "Tranitaly " Feed
ear adsorption isotherms can be modeled and simulated much B+D Section 111 A+B
more easily than those with non-linear isotherisdng, Yun,
Khattabi, & Guiochon, 1997

Different numerical methods have been applied to the sim- ) )
7.3.3. Results and discussion

ulated moving bed technology using the method of lines: suc* Simulated ing bed iabl ber of col

cessive stages metho@Harton & Nicoud, 1995Ludemann- di 'gw ac;eb nf10vmdgﬁ €d uses a vana ﬁlnum ecr":c; Cirmns’

Hombourger et al., 2000 finite differences Kaczmarski & Istributed by four di grent sections as illustratedHy.
In-between these sections there are four nodes: extract outlet,

Antos, 1996, orthogonal collocationf/ang & Ching, 200%and ) ) .
orthogonal collocation in finite elementsggao & Rodrigues, feed inlet, raffinate outlet and desorbent inlet.
The mass balance at the nodes are:

2004 Minceva, Pais, & Rodrigues, 2003

Recently,Leao and Rodrigues (2004resented a compar-
ative study of different numerical strategies. For the solution®
of dynamic models they used two different strategies: the pub- out in .
lic domain package PDECOL, that uses the method of lines Qv + Qb =01 ¢vQv =¢;01, i=AB
and a B-splines finite element collocation procedure and the
DASSL public domain stiff solver (based on backward differen-® Extract node:
tiation formulae) for time integration and orthogonal collocation
in finite elements for spatial discretization (Hermite polynomi- Qn = Qi1 — Qe
als). For the steady-state models they use the COLDAE and
COLNEW public domain solvers. e Feed node:

7.3.1. Mass exchange rate On + Or = Qui; it + ciinQin = ¢y Qi

In simulated moving bed the mass exchange rate between thei = A, B

article and its surroundings is given by the following expres- ,
I[s)ion- Bl Y 9 OXPIES"; Raffinate node:

N; = 1- Eb@ (72) Om — Or= Qv
ep Ot

Direction of

Section IV Port Switching : Section II

Fig. 11. Representation of simulated moving bed process.

Desorbent node:

HereQ; is the liquid flowrate throught sectigrandc; i, the

feed concentration of componeani he boundary conditions

applied to each ot column are the basic Danckwerts bound-

) ary conditions. In this work, as test case, we consider the

7.3.2. Intra-particle mass transfer , _ glucose(A)/fructose(B) separation with a 12-column config-
Different approximations can be considered for describing ation (3, 3, 3, 3) considering linear isotherms as described

the intra-particle mass transfer. In this work we use the linear by Le&o and Rodrigues (2004Jhe operating conditions and

driving force approximationGlueckauf, 195§ as in the case  moge| parameters used in the simulations are presented in

wheregy, is the bed void fraction angi the average molar con-
centration in the adsorbed phase.

of cyclic adsorption processes: Table 7
dg; _ . ;
o = hildis—a) (73) In Fig. 12 we present the solution of the model equa-

tions using four control volumes in each section (solution
wherek; is the LDF coefficienty; sthe molar concentrationinthe of 32 =4x 4x 2 algebraic equations) using QUICK (a) and
particle surface (adsorbed phase) that is related with molar coigmART (b) schemes. The solution using the unbounded QUICK
centration in the inter-particle fluid phase through the adsorptioRcheme presents an unphysical overshoot in fructose concentra-
equilibrium isothermg; s =f{(c;)- tion in section II. The bounded SMART scheme does not present
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Table 7 this problem. What is remarkable from the analysis of this figure
Model parameters and operating conditions is that using only four control volumes the solution is practically
Model parameters Operating conditions identical to the reference solution (obtained using a very refined
mesh).
Peclet numbetre; = jL/Dax=2000; LFFe id;g g,clentration: In %able 8we present the effect of mesh refinement in sim-
Solid/fluid ratio: (1— ep)lep=1.5 ' ulation results using SMART scheme. We can see that eight
Number of transfer unitst;L/ures = 31.5 control volumes in each section (64 algebraic equations) are in
Ratio between fluid and solid velocitieg; =1.0149, this case sufficient to obtain a good solution. Using finite volume

yn =0.6122,yy; =0.7039,yy =0.4252

method the conservation of mass is always ensure@lo and
Isotherm parameterga =0.340%a, gg =0.56345

Rodrigues (2004j)eport errors in the mass balance of 3% for
glucose and 4% for fructose using finite elements collocation
(Hermite polynomials) and 0.3% for glucose and 0.4% for fruc-
tose using COLNEW and COLDAE public domain solvers. The
calculation time for a mesh of 16 control volumes is inferior to
one second in a 1.5 GHz Intel Pentiun®\personal computer.

In Fig. 12is presented the error of the solutighas a func-
tion of the number of discretization volumes for three different
schemes: Upwind (UDS), MINMOD and SMART. In this figure,
¢ is defined as it follows:

f
lci — ']

=T 74
r (74)

wherec{Ef is the reference fructose (or glucose) concentration,
¢; the fructose (or glucose) concentration usirdiscretization
volume and-YPS the fructose (or glucose) concentration using
four volumes and UDS scheme.

One more time we can see that SMART scheme has a con-
vergence order of 3, MINMOD scheme a convergence order of
2 and upwind has only first-order convergengegy( 13.

1 2
10 4 0.1
'S 0.01
he UDS ¢ =64n"?
0.001
0.0001 — MINMOD ¢ =28 ™20
0.00001 7 SMART ¢=3.7 n-30
(b) section
0.000001 T T T T T — T
Fig.12. Solution of simulated moving bed model using parametersTedoie 3 1 10 100
(O) frutose, (O) glucose concentration; (a) solution using QUICK scheme and "

(b) solution using SMART scheme; (—) reference solution. Fig. 13. Effect of mesh refinement: open symbols—fructose concentration

(extract) and close symbols—glucose concentration (raffinate).

Table 8
Effect of mesh refinement, SMART scheme
n t(s) Glucose concentration Fructose concentration
Eluent Extract Feed Raffinate Eluent Extract Feed Raffinate
4 0.1 0.030 0.061 14.00 9.78 0.014 6.72 13.81 0.158
8 0.2 0.000 0.003 14.19 9.87 0.001 6.83 14.19 0.000
16 0.7 0.002 0.015 14.17 9.85 0.005 6.82 14.18 0.019
32 3.3 0.003 0.017 14.17 9.85 0.005 6.82 14.18 0.022

64 14.6 0.003 0.017 14.17 9.85 0.005 6.82 14.18 0.023
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