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Abstract

The prediction of tropospheric ozone concentrations is very important due to the negative impacts of ozone on human health, climate and
vegetation. The development of models to predict ozone concentrations is thus very useful because it can provide early warnings to the pop-
ulation and also reduce the number of measuring sites. The aim of this study was to predict next day hourly ozone concentrations through
a new methodology based on feedforward artificial neural networks using principal components as inputs. The developed model was compared
with multiple linear regression, feedforward artificial neural networks based on the original data and also with principal component regression.
Results showed that the use of principal components as inputs improved both models prediction by reducing their complexity and eliminating
data collinearity.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

In recent decades, global increase in tropospheric ozone
concentrations has been attributed mainly to anthropogenic
emissions (from industry and traffic). Photochemical interac-
tions between emitted pollutants (nitrogen oxides and volatile
organic compounds) and favourable meteorological conditions
(high temperatures and strong solar radiation) can lead to high
ozone concentrations. The residence time of ozone in the at-
mosphere is long, enabling long-range transport over hundreds
to thousands of kilometres, thus allowing occurrence of high
ozone levels at both, regional and urban scale (Sillman,
1999; San José et al., 2005).

The development of mathematical tools to predict ozone
concentrations is very useful because it can provide early
warnings to the population and reduce the number of measur-
ing sites. Accordingly, the European directive concerning
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ozone in ambient air enhances the necessity of developing pre-
dicting models. Ozone concentrations are very difficult to
model because of the different interactions between pollutants
and meteorological variables (Borrego et al., 2003). One of the
approaches to avoid this problem is the principal component
analysis, which has been receiving increased attention as an
accepted method in environmental pattern recognition. This
multivariate statistical technique transforms the original data
set into a set of linear combinations of the original variables.
The uncorrelated new variables, designated by principal com-
ponents, account for the majority of the original variance. In
recent years, multiple linear regressions, feedforward artificial
neural networks as well as principal component regressions
(combining multiple linear regressions and principal compo-
nent analysis) are being used to model ozone concentrations
(Schlink et al., in press; Abdul-Wahab et al., 2005; Gonçalves
et al., 2005; Lengyel et al., 2004; Abdul-Wahab and Al-Alawi,
2002). This work reports the use of a new methodology using
feedforward artificial neural networks based on principal com-
ponents, therefore combining statistical and artificial intelli-
gence techniques.

mailto:fgm@fe.up.pt
http://www.elsevier.com/locate/envsoft
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The aim of this work was: (i) to evaluate the relative influ-
ence of precursor concentrations and meteorological variables
on ozone formation, using principal component analysis; and
(ii) to predict next day hourly ozone concentrations, through
a new methodology based on feedforward artificial neural
networks using principal components as inputs.

2. Methodology

2.1. Site characterization and data

Oporto is situated in Northern Portugal (41 �100N, 8 �400W). The mean an-

nual temperature is around 15 �C (less than 10 �C of difference between

warmer and colder months) and the total mean annual precipitation varies be-

tween 1000 and 1200 mm (40% occurring in the winter season). Annual air

humidity is between 75 and 80% with prevailing winds from W and NW in

the summer and from E and SE in winter (Pereira et al., 2005).

The air quality data were collected from an urban site with traffic influ-

ence, situated in Oporto and integrated in the Air Quality Monitoring Network

of Oporto Metropolitan Area (Oporto-MA), managed by the Regional Com-

mission of Coordination and Development of Northern Portugal (Comiss~ao

de Coordenaç~ao e Desenvolvimento Regional do Norte), under responsibility

of the Ministry of Environment. The meteorological parameters were mea-

sured by the Geophysical Institute of Oporto University (Instituto Geofı́sico

da Faculdade de Ciências da Universidade do Porto) on the left edge of Douro

River, at an altitude of 90 m approximately.

This study considered as predictor variables the hourly concentrations of

ozone (O3), nitrogen monoxide (NO), nitrogen dioxide (NO2) and hourly

means of temperature (T ), wind velocity (WV) and relative humidity (RH).

Ozone concentrations were monitored by UV-absorption photometry; NO

and NO2 were obtained through chemiluminescence method. Monitoring was

continuous and hourly mean concentrations (mg m�3) were recorded. All

equipments were submitted to a rigid maintenance program, with periodical

calibrations being preformed. The meteorological parameters were also

continuously measured.

2.2. Models

Multiple linear regression (MLR) and feedforward artificial neural network

(FANN) were used to predict the next day hourly ozone concentration using as

predictors air pollutant concentrations (NO, NO2 and O3) and meteorological

parameters (T, RH and WV). The same models, but based on principal com-

ponent analysis (PCA), were also used, being referred to as principal compo-

nent regression (PCR) and feedforward artificial neural network based on PC

(PC-FANN), respectively.

PCA is a multivariate statistical method widely used in air pollution anal-

ysis. The objective of PCA, as previously referred, is to reduce the number of

predictive variables and transform them into new variables, called principal

components (PC); these new variables are independent linear combinations

of the original data and retain the maximum possible variance of the original

set. The eigenvalues of the standardized matrix are calculated from Eq. (1):

jC� lIj ¼ 0 ð1Þ

where C is the correlation matrix of the standardized data, l is the eigenvalues

and I is the identity matrix. The weights of the variables in the PC are then

obtained by Eq. (2):

jC� lIjW ¼ 0 ð2Þ

where W is the matrix of the weights.

To evaluate the influence of each variable in the PC, varimax rotation was

used to obtain values of rotated factor loadings. These loadings represent the

contribution of each variable in a specific principal component.

The PC used for the prediction of O3 concentrations were obtained through

multiplication of the standardized data matrix by the previously calculated

weights (W ) (Çamdevýren et al., 2005; Slini et al., in press).
The applicability of the PCA to the data sets used in this study was verified

through the application of modified Bartlett’s sphericity test, expressed by the

following equation:
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where p is the number of components, lj represents the eigenvalue for the kjth

component, n is the number of observations in the sample and l is obtained by

the following equation:
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The null hypothesis considered was that all variables were uncorrelated

and when accepted, PCA could be applied (Peres-Neto et al., 2005).

Multiple linear regression models are often used in the prediction of ozone

concentrations, being represented by the relationship between these concentra-

tions and a set of predictor variables. The general equation is as follows:

Ŷ ¼ P0 þP1X1 þ.þPnXn ð5Þ

where Pi (i¼ 0,.,n) are the parameters generally estimated by least squares

and Xi (i¼ 1,.,n) are the explanatory variables (predictors).

Although these models are simply based on linear and additive associa-

tions of the explanatory variables, they have been extensively used with satis-

factory results. Nevertheless, in regression equations, the collinearity between

the independent variables can lead to incorrect identification of the most

important predictors (Thompson et al., 2001; Heo and Kim, 2004).

Due to the non-linearities of ozone concentrations and the complex inter-

actions between meteorological variables and ozone, the development of non-

linear models, such as artificial neural networks, is currently being applied.

These models perform a non-linear transformation of input data to approxi-

mate output data, learning from experimental data examples and exhibiting

some ability for generalization beyond training data. The most common arti-

ficial neural network is the feedforward artificial neural network (FANN)

where the nodes are grouped into three types of layers, i.e. input, hidden

and output layers. Data are fed into the nodes in the input layer being after

transferred to the subsequent layers. Cybenko (1989) has shown that a one hid-

den layer FANN is enough to approximate any function, if presenting enough

hidden nodes. The topology of the network, along with the neuron processing

function, determines the accuracy and degree of representation of the model

developed to correctly represent the system behaviour.

To obtain the output value of the node, an activation function usually sig-

moid, hyperbolic tangent or linear is applied. Each node in hidden and output

layers has a bias value which is known as the activation threshold (Watanabe

et al., 1989; Martins and Coelho, 2000; Aparı́cio et al., 2002; Morabito and

Versaci, 2003; Schlink et al., 2003; Heo and Kim, 2004; Mas et al., 2004).

In most cases, the FANN is obtained using two distinct data sets: training

and validation. The training data set is used to determine the network topology

and the associated weights by solving a non-linear optimization problem with

the objective function being dictated by the mean squared error (MSE). The

validation data set is used to compute the FANN performance.

Cross-validation is usually used to avoid the overfitting problem that often

appears when applying FANN (Schenker and Agarwal, 1996; Warne et al.,

2004). The best network topology corresponds to a FANN which presents

a minimum value of MSE for the validation data set.

The non-linear features of FANN model and the possibility of incorporat-

ing pollutant concentrations and meteorological parameters as input variables,

suggest good performance for the prediction of O3 concentrations.

The application of PC in FANN models aims to reduce the collinearity of

the data sets, which can lead to worst predictions and also to determine the

relevant independent variables for the prediction of O3 concentrations. The

architecture of the PCA based neural network approach is shown in Fig. 1.

The difference between this approach and the simple FANN model is that

the input variables used are the principal components. Consequently, the network

architecture will be less complex due to the decrease of input variables.
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Fig. 1. Architecture of a PC-FANN model for the prediction of next day O3 concentrations (O3(d )).
According to Warne et al. (2004), the use of PC based neural networks

eliminates the overfitting problem, i.e. both validation and training MSE con-

tinuously decrease.

2.3. Performance indexes

The models’ behaviour in both, development and validation steps, was

evaluated calculating the following statistical parameters: correlation coeffi-

cient (R), mean bias error (MBE), mean absolute error (MAE), root mean

squared error (RMSE) and index of agreement (d2), given by Eqs. (6e10),

respectively:
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��Ŷi � Yi

�� ð8Þ

RMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

�
Yi � Ŷi
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R provides the variability measure of the data reproduced in the model. As this

test does not give the accuracy of the model, other statistical parameters must

be reported. MBE indicates if the observed concentrations are over- or under-

estimated. MAE and RMSE measure residual errors, which give a global idea

of the difference between the observed and modelled values. The values of d2

compare the difference between the mean, the predicted and the observed con-

centrations, indicating the degree of error free for the predictions (Gardner and

Dorling, 2000; Chaloulakou et al., 2003).

3. Results and discussion

Correlation coefficients between pollutants and meteoro-
logical variables were analysed to evaluate the influence of
each variable on O3 concentrations. These coefficients provide
a measure of the linear relation between two variables and also
indicate the existence of collinearity between the explanatory
variables. The statistical significance of the regressions was
analysed by calculating the critical correlation coefficient,
Rcrit, using a significance level of 0.05 (two-tailed test). Rcrit

was calculated by Eq. (11) using DF¼ n� k degrees of
freedom.
Rcrit ¼
tcritffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

DFþ t2
crit

p ð11Þ

The regression is statistically valid if Rcrit is lower than the
correlation coefficient and results showed that all regressions
were statistically valid.

The study performed for July 2003 considered the mean
hourly concentrations of the above-mentioned variables. The
training data set included the 26 first days of the month (616
data points) whereas the validation data set was constituted
by the last five days (118 data points). O3 concentrations var-
ied between 0 and 95 mg m�3 (mean value of 36.6 mg m�3) and
0 and 180 mg m�3 (mean value of 41.4 mg m�3) during training
and validation periods, respectively.

High correlation coefficients were found between O3 and
nitrogen monoxide (NO), nitrogen dioxide (NO2), temperature
(T ), wind velocity (WV) and relative humidity (RH). There-
fore, these variables were used to predict next day hourly O3

concentrations. Also high correlation coefficients were
achieved between some O3 predictors, such as NO and NO2

(0.56), RH and T (�0.77), demonstrating the existence of
collinearity between the variables.

As previously mentioned, multiple linear regression and
feedforward artificial neural networks were used to predict
the next day hourly O3 concentrations. These models were
based on the original data (MLR and FANN) and on the PC
(PCR and PC-FANN).

Table 1 shows the matrix of the weights for the PC, which
demonstrates the relative importance of each standardized pre-
dictor in the PC calculations.

To apply the FANN models (based on original data and
PC), several network structures were tested to find the most
appropriate topology. Using original variables as inputs, the
best architecture consisted of a three-layer network with six
neurons in the input layer, eight neurons in the hidden layer
and one neuron in the output layer. Considering PC as inputs,

Table 1

Matrix of the weights for the principal components

Variables PC1 PC2 PC3 PC4 PC5 PC6

NO �0.325 0.557 �0.555 �0.068 0.410 0.320

NO2 �0.275 0.648 0.442 0.429 �0.328 �0.129

O3 0.472 0.040 0.234 0.530 0.658 0.086

T �0.461 0.286 0.281 �0.396 �0.215 0.651

RH �0.433 �0.427 0.083 0.403 �0.105 0.670

WV 0.441 0.053 �0.596 0.459 �0.484 0.041
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the best architectures were achieved with different number of
neurons in the input layer depending on the number of PC
used. The hidden and the output layer consisted of eight and
one neurons, respectively. Sigmoid and linear functions were
used as activation functions in the neurons of the hidden layer
and output neuron, respectively. The training was done for
a maximum of 10 000 iterations. To avoid the overfitting prob-
lem, which generally appears with the application of FANN,
cross-validation tests were used. The selection of the network
was performed considering a minimum value of MSE for the
validation data set.

Table 2 presents the values of the performance indexes us-
ing MLR and FANN for both, training and validation steps.
A t-test (significance level of 0.05) was applied to calculate
the statistically valid parameters. During the studied period,
the coefficient of NO concentrations had a confidence interval
[�0.02, 0.08] showing that it was statistically invalid; thus the
NO concentrations were removed from the MLR model. The
derived model is as follows:

½O3�ðdÞ¼� 57:0þ 0:16½NO2�ðd�1Þþ2:86Tðd�1Þ þ 0:14RHðd�1Þ

þ 0:54WVðd�1Þ þ 0:40½O3�ðd�1Þ ð12Þ

The results obtained during training and validation periods
using MLR demonstrated that only the MBE value presented
a significant difference, which means that although this model
is only a simple linear additive association of the variables, it
presented reasonable results.

Table 2

Performance indexes achieved using MLR and FANN during training and

validation periods

Performance

indexes

Training Validation

MLR FANN MLR FANN

R 0.74 0.76 0.70 0.78

MBE �1.0� 10�5 0.66 11.50 2.68

MAE 13.05 12.63 23.61 19.83

RMSE 16.00 15.37 29.50 25.64

d2 0.83 0.85 0.81 0.84
 The prediction with FANN model was performed using 2000
iterations (cross-validation). The performance indexes, calcu-
lated for the training and validation periods, were quite similar,
which indicates that the model performed good predictions.
Better performance indexes were achieved with FANN model
for both, training and validation steps, with the exception of
the MBE value that was lower using the MLR in the training
period. However, with FANN model, the values of MBE were
positive, indicating a slight overprediction.

As previously mentioned, the next day hourly O3 concen-
trations were also predicted based on the PC (PCR and
PC-FANN models). Bartlett’s sphericity test results (Table 3)
showed that the PCA was applicable to this data set; the eigen-
values and respective variances were calculated through the
PCA and are shown in Fig. 2.

For PCR and PC-FANN models, the forecasting was per-
formed considering from two to six PC separately. Consider-
ing two PC the eigenvalues were higher than considering
one (Kaiser Criterion), being responsible for 77% of the total
variance (when considering six PC, all the variance was
accounted).

A t-test was also performed for these regressions, to statis-
tically evaluate the regression parameters. Considering the
statistically valid parameters, new regressions were then
performed.

Table 4 presents the values of performance indexes calcu-
lated for both models, using from two to six PC.

Using the PCR model, performance indexes for the valida-
tion step were generally slightly worse than for the training
step. It is important to point out that for this model the
MBE values were very low in the training step, independently
of the number of PC used. The same model was achieved us-
ing either four or five PC. Considering all the models achieved

Table 3

Values of the c2 distribution using Bartlett’s sphericity test

Component (cc)
2 c2 DF

1 23.7 715 14

2 17.0 208 9

3 11.1 61 5

4 6.0 40 2
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Fig. 2. Scree plot and respective cumulative variances (%).



101S.I.V. Sousa et al. / Environmental Modelling & Software 22 (2007) 97e103
T
ab

le
4

P
er

fo
rm

an
ce

in
de

xe
s

ac
h

ie
ve

d
w

it
h

P
C

R
an

d
P

C
-F

A
N

N
d

u
ri

ng
tr

ai
n

in
g

(T
ra

)
an

d
va

li
d

at
io

n
(V

al
)

p
er

io
d

s

P
er

fo
rm

an
ce

in
de

xe
s

T
w

o
P

C
T

h
re

e
P

C
F

o
u

r
P

C
F

iv
e

P
C

a
S

ix
P

C

P
C

R
P

C
-F

A
N

N
P

C
R

P
C

-F
A

N
N

P
C

R
P

C
-F

A
N

N
P

C
-F

A
N

N
P

C
R

P
C

-F
A

N
N

T
ra

V
al

T
ra

V
al

T
ra

V
al

T
ra

V
al

T
ra

V
al

T
ra

V
al

T
ra

V
al

T
ra

V
al

T
ra

V
al

R
0

.7
0

0
.6

8
0

.7
0

0
.6

3
0

.7
0

0
.6

7
0

.7
3

0
.6

5
0

.7
2

0
.7

3
0

.7
3

0
.7

3
0

.7
3

0
.7

8
0

.7
4

0
.6

8
0

.7
7

0
.7

6

M
B

E
�

3
.1
�

1
0
�

7
1

1
.3

3
�

0
.0

4
1

6
.1

8
�

4
.3
�

1
0
�

7
1

2
.7

8
0

.1
0

1
4

.4
3

�
1

.8
�

1
0
�

7
9

.1
3

0
.6

2
6

.4
9

0
.7

4
8

.4
9

�
1

.1
�

1
0
�

6
1

2
.1

2
�

0
.1

6
5

.2
3

M
A

E
1

3
.9

9
2

3
.2

9
1

4
.0

0
2

5
.1

6
1

3
.8

2
2

4
.0

4
1

3
.1

8
2

4
.2

7
1

3
.5

1
2

2
.0

6
1

3
.2

4
2

1
.8

4
1

3
.2

8
2

0
.3

8
1

3
.0

2
2

4
.0

4
1

2
.1

8
1

9
.7

9

R
M

S
E

1
6

.8
7

2
9

.9
3

1
6

.8
4

3
1

.9
6

1
6

.7
2

3
0

.4
4

1
6

.1
2

3
1

.1
3

1
6

.4
5

2
8

.1
3

1
6

.2
1

2
1

.7
8

1
6

.0
7

2
5

.7
2

1
5

.9
8

3
0

.0
3

1
4

.9
4

2
6

.6
9

d 2
0

.8
1

0
.7

9
0

.8
1

0
.8

2
0

.8
1

0
.8

0
0

.8
3

0
.8

3
0

.8
2

0
.8

2
0

.8
4

0
.8

1
0

.8
4

0
.8

6
0

.8
3

0
.8

1
0

.8
7

0
.8

4

a
T

h
e

p
er

fo
rm

an
ce

in
d

ex
es

fo
r

P
C

R
u

si
n

g
fi

ve
P

C
w

er
e

th
e

sa
m

e
as

u
si

n
g

fo
u

r
P

C
.

with different number of PC, best performance indexes were
obtained when prediction was performed using four PC, which
corresponds to a cumulative variance of 91.9%. These four PC
were then used as predictor variables and the following model
was obtained:

½O3�ðdÞ¼ 38:8þ 9:57PC1 þ 5:24PC2þ 2:93PC3þ 5:59PC4

ð13Þ

Table 5 shows, as an example, the rotated factor loadings
and respective communalities using four and two PC, respec-
tively. The bold marked loads indicate the variables that most
influenced the correspondent component. Using four PC, those
variables (associated with PC1, PC2, PC3 and PC4) were: (i) T
and RH, (ii) NO and O3 concentrations, (iii) WV and NO2 con-
centration, and (iv) O3 concentration. It was also observed that
with lower number of PC, more variables were accounted for
each one. In addition, communality values were higher using
four PC.

The validation of PC-FANN models was performed accord-
ing to the cross-validation, using different number of iterations
depending on the number of PC used. The number of itera-
tions, from two to six PC, was 500, 8000, 1000, 1000 and
3500, respectively. Also, the number of neurons in the input
layer was different depending on the number of PC used.

The performance indexes, obtained using PC-FANN, were
not very different in the training and validation periods, with
exception of the MBE values being slightly different. For
this model, the best performance was achieved when five PC
were used.

The performance indexes calculated for PCR and PC-
FANN showed that the approach using neural networks led
to better predictions.

Fig. 3 shows, as an example, the predictions with all
models and the measured data, corresponding to the valida-
tion period. It was shown that neural networks led to better
predictions. Although the PC-FANN and the FANN models
presented similar results, because PCA application led to
the introduction of fewer variables and thus less complex net-
works, the first approach was considered to be better. Con-
cluding, PC-FANN is a promising tool for the prediction of
ozone concentration. The worst performance occurred with
MLR. It is also important to refer that the neural networks
achieved a significant power of generalization beyond the
training data, i.e. in validation period they were tested in ex-
trapolated regions being able to predict hourly O3 concentra-
tions. Although the MBE was generally positive for all the
models, meaning that, in average, the predicted ozone con-
centrations were overestimated, it can be observed in Fig. 3
that the highest measured concentrations were underesti-
mated. This problem occurred because the highest concentra-
tions were not contemplated during the training step, which
should be avoided. Also it was observed that the models
were not able to predict lower concentrations. This occurs be-
cause, in the validation period, the percentage of data points
lower than 20 mg m�3 was 40% and in the training period it
was of 25%.



102 S.I.V. Sousa et al. / Environmental Modelling & Software 22 (2007) 97e103
Table 5

Rotated factor loadings using four and two PC and respective communalities

Variables Four PC Two PC

Rotated factor loadings Communalities Rotated factor loadings Communalities

PC1 PC2 PC3 PC4 PC1 PC2

NO �0.112 0.879 0.376 �0.061 0.93 �0.213 0.838 0.75

NO2 �0.023 0.278 0.923 �0.019 0.96 �0.084 0.884 0.79

O3 0.486 L0.550 0.011 0.573 0.87 0.774 �0.376 0.74

T 0.885 �0.287 �0.031 0.204 0.91 0.892 �0.123 0.81

RH L0.897 �0.013 0.044 �0.329 0.91 L0.924 �0.042 0.86

WV 0.383 �0.060 �0.289 0.833 0.93 0.733 �0.336 0.65

Bold marked loads indicate the variables that most influence each parameter.
4. Conclusions

MLR and FANN were used to predict the next day
hourly ozone concentrations using as predictors air pollutant
concentrations (NO, NO2 and O3) and meteorological
parameters (T, RH and WV). These predictors were selected
through the calculation of correlation coefficients. Two
different approaches were used, considering original data
and PC as inputs.

During the studied period, the coefficient of NO
concentrations was found to be statistically invalid and
therefore NO concentrations were removed from MLR
model.

Using four PC, the original variables (associated with PC1,
PC2, PC3 and PC4) were: (i) T and RH, (ii) NO and O3 concen-
trations, (iii) WV and NO2 concentration, and (iv) O3

concentration.
The results showed that the use of FANN led to more accu-

rate results than linear models (MLR and PCR), due to the
account of non-linearities. The application of PC in this model
was considered better than using the original data, because it
reduced the number of inputs and therefore decreased the
model complexity. The performance indexes were similar
using both approaches.

Considering MLR and PCR, the performance indexes were
higher using PCR.

The use of PC based models was considered more efficient,
due to elimination of collinearity problems and reduction of
the number of predictor variables. It was also verified that
the use of PC based neural networks improved the prediction
of ozone concentrations, therefore proving to be a useful tool
to public health protection because it can provide early warn-
ings to the population. Although the predicted ozone concen-
trations were in average overestimated for all the models, the
highest concentrations observed were underestimated, because
the highest concentrations were not contemplated during the
training step, which should be avoided. Also because the
models were very sensitive to the training data set, they
were not able to predict lower concentrations.
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of ozone concentration in ambient air using multivariate methods. Chemo-

sphere 57, 889e896.

Martins, F.G., Coelho, M.A.N., 2000. Application of feedforward

artificial neural networks to improve process control of PID-

based control algorithms. Computers & Chemical Engineering 24, 853e858.

Mas, J.F., Puig, H., Palácio, J.L., Sosa-López, A., 2004. Modelling deforesta-
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